54-130-3-PB.docx

by Kenna Bunn

Submission date: 04-Oct-2024 10:28AM (UTC-0500)

Submission ID: 2474952450

File name: 54-130-3-PB.docx (224.24K)

Word count: 2375

Character count: 13009

Indonesian Journal of Fundamental and Applied Chemistry

Article http://ijfac.unsri.ac.id

Determination of Magnetic Mineral Crystal Structure Using X-Ray Diffraction (XRD) on Igneous Rock from Ogolowe and Bajugan Village, Toli toli District Central Sulawesi

Musfirah Cahya Fajrah^{1,*}, Alia Mapesso^{2,}, and Sandra Kasim³

¹Physics Departement, Faculty of Mathematics and Natural Science, Institut Sains Dan Teknologi Nasional, Jakarta, Indonesia ²³Physics Departement, Faculty of Mathematics and Natural Science, Universitas Tadulako, Central Sulawesi, Indonesia

*Corresponding Author: fira.toana@gmail.com

Abstract

Study of igneous rocks derived from Ogowele Village and Village Toli-Toli Bajugan has been conducted to determine the magnetic minerals contained in the igneous rocks, as well as determine the crystal system, lattice constants and field diffraction by comparison sieve 60 mesh and 80 mesh. Process characterization and analysis using X-Ray Diffraction (XRD). Characterization and analysis of the results showed that the compound was detected both rock samples Fe₃O₄, SiO₂, Al₂O₃ and MnO₂. Igneous rocks derived from Ogowele village is dominated by compounds SiO₂ (quartz) by 52% and rocks from Bajugan village dominated by the compound Fe₃O₄ (magnetite) by 40%. The crystal structure is cubic and hexagonal compound to compound Fe₃O₄ SiO₂. Fe₃O₄compound cubic lattice constants are a = b = c is 8.375 Å. To compound the hexagonal SiO₂ ie a = b of 4.898 Å and c of 5.385 Å. Field diffraction on Fe₃O₄compound is (3 1 1) and the SiO₂ compound that is (101).

Keywords: X-Ray Diffraction, Fe₃O₄ Compound, SiO₂ Compound, cubic, hexagonal

Abstrak (Indonesian)

Telah dilakukan penelitian terhadap batuan beku yang berasal dari Desa Ogowele dan Desa Bajugan Kabupaten Toli-Toli untuk mengetahui mineral-mineral magnetik yang terkandung pada batuan beku tersebut, serta menentukan sistem kristal, konstanta kisi dan bidang difraksi dengan perbandingan ayakan 60 mesh dan 80 mesh. Proses karakterisasi dan analisis menggunakan *X-Ray Diffraction* (XRD). Hasil karakterisasi dan analisis menunjukkan bahwa pada kedua sampel batuan terdeteksi senyawa Fe₃O₄, SiO₂, Al₂O₃ dan MnO₂. Batuan beku yang berasal dari Desa Ogowele didominasi oleh kandungan senyawa SiO₂ (kuarsa) sebesar 52 % dan batuan yang berasal dari Desa Bajugan didominasi oleh senyawa Fe₃O₄ (magnetite) sebesar 40 %. Struktur kristal yang terbentuk yaitu kubik pada senyawa Fe₃O₄ dan heksagonal pada senyawa SiO₂. Konstanta kisi senyawa Fe₃O₄ kubik yaitu a = b = c adalah 8,375 Å. Untuk senyawa SiO₂ heksagonal yaitu a = b sebesar 4,898 Å dan c sebesar 5,385 Å. Bidang difraksi pada senyawa Fe₃O₄ yaitu (311) dan pada senyawa SiO₂ yaitu [101]

Kata kunci: X-Ray Diffraction, Senyawa Fe₃O₄, Senyawa SiO₂, kubik, heksagonal

Article Info

Received 6 June 2017
Received in revised 5 Juy 2017
Accepted 10 July 2017
Available online 17
July 2017

INTRODUCTION

The mining sector in Indonesia is one of the sectors which are the mainstay of government in generating foreign exchange. This is because Indonesia is one country that has many mineral resources. One area in Indonesia, Central Sulawesi, especially Toli-Toli is an area of huge potential for mining materials such as igneous rock which contains magnetic minerals. The spread of igneous rocks almost in 10 subdistricts in Toli Toli, including in the village and village Ogowele Bajugan (Department of Industry and Energy and Mineral Resources Kab.Toli-Toli,

2006)

. Magnetic minerals in fact there is always naturally in rocks, soil, or sediments, despite the abundance quantitatively quite small at around 0.1% of the total mass of rock or sediment (Bijaksana, 2002). Magnetic minerals are minerals that have high magnetic properties. The magnetic mineral properties, the type and morphology varied depending on source (Hunt and Moskowitz, 1995).

Igneous rocks (from Latin: ignis, "fire") is a rock that resulted from the freezing process of magma (Sipatriot, 2013). Basically, the majority (99%) igneous rock

2 1 DOI:10.24845/ijfac.v2.i2.52 composed of main elements, namely: Oxygen, Silicon, Aluminum, Iron, Calcium, Sodium, Potassium and Magnesium. These elements form the main silicate minerals: Feldspar, Olivine, Piroksen, amphibole, quartz and mica. These minerals occupy more than 95% by volume of igneous rocks, and became the basis for the classification and explain the origin of magma (Graha, 1987).

Due to the lack of studies of magnetic minerals in igneous rocks in Toli-Toli it is necessary to identify more of the magnetic minerals contained in igneous rocks. Igneous rocks derived from Ogowele Village and Village Toli-Toli Bajugan can draw objects that contain magnets then chances are igneous rocks that have a fairly high Fe content. For it will be the characterization of magnetic minerals contained in the igneous rocks using X-Ray Diffraction (XRD) which includes the formation of compounds, crystal system, lattice constants and fields of diffraction of the magnetic minerals of igneous rocks.

The objectives of this study is to determine the magnetic minerals contained in igneous rocks of the Ogowele and Bajugan village Toli-Toli District and determine the crystal system, lattice constants, and the diffraction plane of the magnetic minerals of igneous rocks.

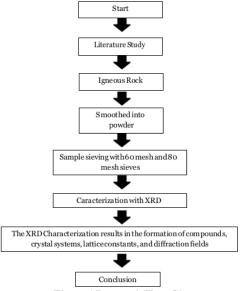


Figure 1 Research Flow Chart

EXPERIMENTAL SECTION

Research for the characterization of magnetic minerals of igneous rocks using XRD performed on two laboratories, namely: Laboratory of Soil Science, Faculty of Agriculture UNTAD and Microstructure Laboratory of

Physics, State UNM, Makassar. The timing of the study is from March to August 2013.

In the preparation phase materials used in the form of powder igneous rocks. Making the test material using the method of variation of grain size of 60 mesh and 80 mesh. At this stage of characterization using X-Ray tool Difraction (XRD) to determine its content and its compounds and crystal system of the sample.

Research flow chart showed;

RESULTANDDISCUSSION

Characterization using XRD is characterization process that aims to determine the crystal structure of igneous rock samples that include several parameters, i.e.: the crystal structure, lattice constants, and the field diffraction (Sartono, 2006) The results of XRD characterization of igneous rock samples can be seen in Table 1 to 4 and Figure 2 to 5.

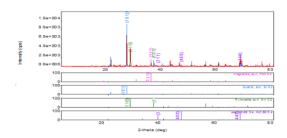
Based on the XRD results obtained for samples of igneous rocks from the village Ogowele with a size of 60 mesh looks compound Fe₃O₄ (magnetite) has a 21.6% weight percent, SiO2 (quartz) of 52.2%, MnO2 (pyrolusite) by 9, 22%, and 17% Al₂.66O₄. It is clear that the compound has the highest weight percent compound SiO2 (quartz). As for the compound Fe₃O₄very small. Fe₃O₄ compound has a cubic crys structure or isometric, based on the latti constant of a = b = c = 8.375 Å with crystallographic angle α = $\beta = \gamma = 90^{\circ}$. SiO² and Al₂O₃ compound has a hexagonal crystal structure with lattice constants $a = b \neq c$ and crystallographic angle $\alpha = \beta \neq \gamma = 1200$. While the compound MnO2 seen that the lattice constant a = b = 4.492Å Adan c=2.924 and has a crystallographic angle $\alpha = \beta = \gamma =$ 90 ° so that the compound MnO2 has a tetragonal crystal structure

Different results shown by the results of the characterization of the rock sample size of 80 mesh which Fe_3O_4 by 22%, 53% compound SiO_2 , MnO_2 by 8.6% and 17.1% Al_2O_3 . The difference in results is due to the sample size. The finer the sample, the more accurate the phases were detected.

Based on the XRD results it can be said that the rock came from the ogowele village is classified as alkaline igneous rocks (andesite) because it is dominated by high SiO2 compounds.

In igneous rock samples from the village Bajugan 60 mesh size was detected only 3 compounds which amounted to 39.7% Fe₃O₄, 32.7% SiO₂, and Al₂O₃ compounds by 28%. While the sample size of 80 mesh detected four compounds, namely by 40% Fe₃O₄, SiO₂ compounds by 33%, Al₂O₃ 24.9% and 2.1% Mn₃O₄ compound. Igneous rock samples Bajugan village also has a crystal structure similar to igneous rock samples Ogowele village because the resulting compound is also the same. Fe₃O₄ compound has a cubic crystal structure / isometric, based on the lattice constant of a=b=c=8,385 Å the angle is α = β crystallography= γ =90odan field

diffraction [311]. SiO₂ and Al₂O₃compound has a hexagonal crystal structure with lattice constants $a=b\neq c$ and crystallographic angle $\alpha=\beta\neq\gamma=120^{\circ}$ having SiO₂ diffraction field is [101] and Al₂O₃ is [100]. While the


compound MnO_2 seen that the lattice constant $a=b=c=5,886 \text{\AA}$ and $2,9,54 \text{\AA}$ and has a crystallographic angle $\alpha=\beta=\gamma=90$ ° and the field diffraction [211] so that the compound MnO2 has a tetragonal crystal structure.

 $Table\ 1. Compound\ with\ crystal\ system\ of\ XRD\ result\ of\ Ogowele\ rock\ 60\ mesh\ size.$

1 No	Compound	Content (%)	2θ (°)	d-Value (Å)	Int (cps	Crystal Structur e	crystallographic angle	Lattice Contant	Diffraction field
1			35,530	2,5246	218				
2	Fe ₃ O ₄	21,6	30,228	2,9542	47	Cubik	α=β=γ=90°	a=b=	(311)
3	10304	21,0	43,157	2,0944	74	Cuoix		С	(311)
4			62,61	1,4825	150				
5			26,726	3,3328	1387				
6	SiO ₂	52,2	20,945	4,2378	319	Hexagonal	α=β≠γ=	a=b≠ c	(101)
7	3102	32,2	39,609	2,2735	51	Tiexagonai	120° c	(101)	
8			60,048	1,5394	167				
9			28,053	3,1781	498		2 00		
10	MnO ₂	9,2	36,627	2,4514	62	Tetragonal	α=β=γ=90°	a=b≠ c	(110)
11			57,04	1,6132	99				
12			37,49	2,397	43		2 000		
13	Al ₂ .66.O ₄	17	45,939	1,9739	130	Cubik	$\alpha = \beta = \gamma = 90^{\circ}$	a=b= c	(400)
14			68,405	1,3703	125	1			

 $Table\ 2. Compound\ with\ crystal\ system\ of\ XRD\ result\ of\ Ogowele\ rock\ 80\ \textit{mesh}\ size$

No	Compound	Content (%)	2θ(<mark>°)</mark>	d- Valu e (Å)	Int (cps)	Crystal Structur e	crystallographic angle	Lattice Contant	Diffraction field
1			30,142	2,9624	312				
2	Fe ₃ O ₄	22	35,463	2,5292	389	Cubic	$\alpha = \beta = \gamma = 90^{\circ}$	a=b=c	(311)
3			62,54	1,4839	181				
4			20,890	4,2488	560				
5			26,674	3,3392	650		- O+ 120a		
6	SiO_2	53	36,57	2,455	117	Hexagonal	$\alpha = \beta \neq \gamma = 120^{\circ}$	a=b≠c	(101)
7			39,459	2,2818	66				
8			50,16	1,8173	104				
9	MnO_2	8,6	22,082	4,022	136	Orthorombik	$\alpha = \beta = \gamma = 90^{\circ}$	a≠b≠c	(110)
10			24,236	3,6692	81		~_0+v_1000		(012)
11	Al ₂ .O ₃	17,1	43,01	2,101	96	Hexagonal	$\alpha = \beta \neq \gamma = 120^{\circ}$	a=b≠c	(113)
12			56,94	1,6158	99				(116)

 $Figure 2. XRD \, result \, of \, igneous \, rock \, samples \, Ogowele \, village \, 60 \, \textit{Mesh} \, size$

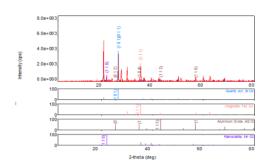
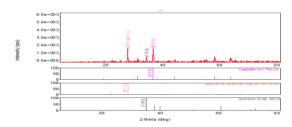
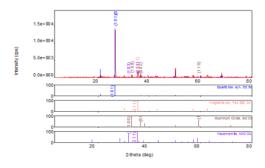




Figure 3. XRD result of igneous rock samples Ogowelevillage 80 Mesh size

 $Figure\,4.XRD\,result\,of\,igneous\,rock\,samples\,from\,Bajugan\,village\,60\,\textit{Mesh}\,size$

 $Figure\,5. XRD\,result\,of\,igneous\,rock\,samples\,from\,Bajugan\,village\,80\,\textit{Mesh}\,size$

Table 3. Compound and crystal system of XRD result of Bajugan rock 60 mesh size

No	Compound	Content (%)	2θ (<mark>º)</mark>	d- Valu e (Å)	Int (cps)	Crystal Structur e	crystallographic angle	Lattice Contant	Diffraction field
1			30,14	2,962	125				
2	Fe ₃ O ₄	39,7	35,529	2,5247	550		α=β=γ=90°	a=b=c	(311)
3	Fe ₃ O ₄ 39,7	57,04	1,6132	216	Cubic	μ-ρ-γ-90		(311)	
4			62,61	1,4824	225				
4	SiO ₂	32,7	26,739	3,3313	285	Hexagonal	α=β≠γ=120°	a=b≠c	(011)
5	2.02	52,7	54,12	1,6931	216	110.agonar			(071)
6	$Al_2.O_3$	28	33,300	2,6883	156	Hexagonal	α=β≠γ= 120°	a=b≠c	(012)

Table 4. Compound and crystal system of XRD result of Bajugan rock 80 mesh size

No	Compound	Content (%)	2θ(°)	d- Valu e (Å)	Int (cps)	Crystal Structur e	crystallographic angle	Lattice Contant	Diffraction field
1			30,214	2,9555	110				
2	Fe ₃ O ₄	40	35,472	2,5285	552	Cubic	α=β=γ=90°	a=b=c	(311)
3	10304	10	43,12	2,0962	84	Cubic	α-ρ-γ-50	u-0-c	(311)
4			62,60	1,4828	250				
5			20,981	4,2305	199				
6			26,679	3,3386	1871		. 0 100		
7	SiO ₂	33	42,520	2,1243	57	Hexagonal	α=β≠γ=120°	a=b≠c	(101)
8			50,215	1,8153	368				
9			67,81	1,3809	36				
10	Mn ₃ O ₄	2,1	53,98	1,697	182	Tetragonal	α=β=γ=90°	a=b≠c	(211)
11	Mn ₃ O ₄	2,1	56,96	1,6154	167	Tetragonai	<u> </u>	u=5+0	(211)
12	$Al_2.O_3$	24,9	33,20	2,696	168	Hexagonal	α=β≠γ= 120°	a=b≠c	(100)

Based on the above results it is clear that the composition of rock samples from Bajugan village dominated by the Fe_3O_4 compound. With a high content of the Fe_3O_4 compound then rocks from the Bajugan village very useful as a main raw material of iron/steel.

CONCLUSION

Based on the analysis and XRD characterization in both the rock samples indicate that the detected magnetic minerals are compounds Fe_3O_4 (Magnetite). Where the igneous rocks from the village Ogowele have Fe_3O_4 content of 22%, while rocks from Bajugan village has a fairly high Fe_3O_4 content of about 40%.

From the results of XRD and proof theory calculations for the two rocks is known that the compound Fe_3O_4 from each sample has a cubic crystal structure / isometric with diffraction field or index field is [3 1 1] and has a lattice constant a=b=c. In a sample size of 60 mesh stone Ogowele Fe_3O_4 obtained compound with the results of XRD lattice constant values are $a=b=c=8.375 \, \text{Å}$ whereas the theoretical calculation that $a=b=c=8.372 \, \text{Å}$. While the rock sample size of 60 mesh Village Bajugan lattice constant values obtained XRD results are $a=b=c=8.385 \, \text{Å}$ while the results of theoretical calculations are $a=b=c=8.372 \, \text{Å}$.

DOI:10.24845/ijfac.v2.i2.52

References

- [1] Bijaksana, S, F., 2012, Journal of Geophysics: *Analysis of magnetic minerals in ITB environmental issues*, ITB, Bandung.
- [2] Department of Industry, 2012, Potential Mineral Resources in Toli-Toli, Toli-Toli, Central Sulawesi.
- [3] Graha, Doddy, S., 1987, Rocks and Minerals, Nova, Bandung.
- [4] Hunt, Christopher P., Moskowitz, Bruce P., 1995, Magnetic properties of rocks and minerals, Rock Physics and Phase Relations: A Handbook of Physical Constants 3, Washington DC: American Geophysical Union, JLM 189-204.
- [5] Sartono, AA, 2012, X-ray diffraction (X-RD), Final project laboratory subject, Department of Physics, Faculty of Mathematics and Natural Science, University of Indonesia, Jakarta

54-130-3-PB.docx

ORIGINALITY REPORT

11% SIMILARITY INDEX

10%
INTERNET SOURCES

1%
PUBLICATIONS

2% STUDENT PAPERS

PRIMARY SOURCES

1

www.ijfac.unsri.ac.id

Internet Source

9%

2 Submitted to Sriwijaya University
Student Paper

1 %

V. Borozan, D. Rajicic, R. Ackovski. "Minimum loss reconfiguration of unbalanced distribution networks", IEEE Transactions on Power Delivery, 1997

1 %

Publication

Exclude quotes

Off

Exclude matches

Off

Exclude bibliography Off

54-130-3-PB.docx

PAGE 1			
PAGE 2			
PAGE 3			
PAGE 4			
PAGE 5			
PAGE 6			

Indonesian Journal of Fundamental and Applied Chemistry

Article http://ijfac.unsri.ac.id

Determination of Magnetic Mineral Crystal Structure Using X-Ray Diffraction (XRD) on Igneous Rock from Ogolowe and Bajugan Village, Toli toli District Central Sulawesi

Musfirah Cahya Fajrah^{1,*}, Alia Mapesso ², and Sandra Kasim ³

¹Physics Departement, Faculty of Mathematics and Natural Science, Institut Sains Dan Teknologi Nasional, Jakarta, Indonesia ^{2,3}Physics Departement, Faculty of Mathematics and Natural Science, Universitas Tadulako, Central Sulawesi, Indonesia

Abstract

Study of igneous rocks derived from Ogowele Village and Village Toli-Toli Bajugan has been conducted to determine the magnetic minerals contained in the igneous rocks, as well as determine the crystal system, lattice constants and field diffraction by comparison sieve 60 mesh and 80 mesh. Process characterization and analysis using X-Ray Diffraction (XRD). Characterization and analysis of the results showed that the compound was detected both rock samples Fe₃O₄, SiO₂, Al₂O₃ and MnO₂. Igneous rocks derived from Ogowele village is dominated by compounds SiO₂ (quartz) by 52% and rocks from Bajugan village dominated by the compound Fe₃O₄ (magnetite) by 40%. The crystal structure is cubic and hexagonal compound to compound Fe₃O₄ SiO₂. Fe₃O₄ compound cubic lattice constants are a = b = c is 8.375 Å. To compound the hexagonal SiO₂ ie a = b of 4.898 Å and c of 5.385 Å. Field diffraction on Fe₃O₄ compound is [3 1 1] and the SiO₂ compound that is [1 0 1].

Keywords: X-Ray Diffraction, Fe₃O₄ Compound, SiO₂ Compound, cubic, hexagonal

Abstrak (Indonesian)

Telah dilakukan penelitian terhadap batuan beku yang berasal dari Desa Ogowele dan Desa Bajugan Kabupaten Toli-Toli untuk mengetahui mineral-mineral magnetik yang terkandung pada batuan beku tersebut, serta menentukan sistem kristal, konstanta kisi dan bidang difraksi dengan perbandingan ayakan 60 mesh dan 80 mesh. Proses karakterisasi dan analisis menggunakan *X-Ray Diffraction* (XRD). Hasil karakterisasi dan analisis menunjukkan bahwa pada kedua sampel batuan terdeteksi senyawa Fe₃O₄, SiO₂, Al₂O₃ dan MnO₂. Batuan beku yang berasal dari Desa Ogowele didominasi oleh kandungan senyawa SiO₂ (kuarsa) sebesar 52 % dan batuan yang berasal dari Desa Bajugan didominasi oleh senyawa Fe₃O₄ (*magnetite*) sebesar 40 %. Struktur kristal yang terbentuk yaitu kubik pada senyawa Fe₃O₄ dan heksagonal pada senyawa SiO₂. Konstanta kisi senyawa Fe₃O₄ kubik yaitu a = b = c adalah 8,375 Å. Untuk senyawa SiO₂ heksagonal yaitu a = b sebesar 4,898 Å dan c sebesar 5,385 Å. Bidang difraksi pada senyawa Fe₃O₄ yaitu (3 1 1) dan pada senyawa SiO₂ yaitu [1 0 1]

Article Info

Received 2 April 2017
Received in revised 29 May 2017
Accepted 5 June 2017
Available online 15 June 2017

Kata kunci: X-Ray Diffraction, Senyawa Fe3O4, Senyawa SiO2, kubik, heksagonal

INTRODUCTION

The mining sector in Indonesia is one of the sectors which are the mainstay of government in generating foreign exchange. This is because Indonesia is one country that has many mineral resources. One area in Indonesia, Central Sulawesi, especially Toli-Toli is an area of huge potential for mining materials such as igneous rock which contains magnetic minerals. The spread of igneous rocks almost in 10 subdistricts in Toli Toli, including in the village and village Ogowele Bajugan (Department of Industry and Energy and Mineral

Resources Kab.Toli-Toli, 2006).

Magnetic minerals in fact there is always naturally in rocks, soil, or sediments, despite the abundance quantitatively quite small at around 0.1% of the total mass of rock or sediment (Bijaksana, 2002). Magnetic minerals are minerals that have high magnetic properties. The magnetic mineral properties, the type and morphology varied depending on source (Hunt and Moskowitz, 1995).

Igneous rocks (from Latin: ignis, "fire") is a rock that resulted from the freezing process of magma (Sipatriot, 2013). Basically, the majority (99%) igneous

^{*}Corresponding Author: fira.toana@gmail.com

rock composed of main elements, namely: Oxygen, Silicon, Aluminum, Iron, Calcium, Sodium, Potassium and Magnesium. These elements form the main silicate minerals: Feldspar, Olivine, Piroksen, amphibole, quartz and mica. These minerals occupy more than 95% by volume of igneous rocks, and became the basis for the classification and explain the origin of magma (Graha, 1987).

Due to the lack of studies of magnetic minerals in igneous rocks in Toli-Toli it is necessary to identify more of the magnetic minerals contained in igneous rocks. Igneous rocks derived from Ogowele Village and Village Toli-Toli Bajugan can draw objects that contain magnets then chances are igneous rocks that have a fairly high Fe content. For it will be the characterization of magnetic minerals contained in the igneous rocks using X-Ray Diffraction (XRD) which includes the formation of compounds, crystal system, lattice constants and fields of diffraction of the magnetic minerals of igneous rocks.

The objectives of this study is to determine the magnetic minerals contained in igneous rocks of the Ogowele and Bajugan village Toli-Toli District and determine the crystal system, lattice constants, and the diffraction plane of the magnetic minerals of igneous rocks.

EXPERIMENTAL SECTION

Research for the characterization of magnetic minerals of igneous rocks using XRD performed on two laboratories, namely: Laboratory of Soil Science, Faculty of Agriculture UNTAD and Microstructure Laboratory of Physics, State UNM, Makassar. The timing of the study is from March to August 2013.

In the preparation phase materials used in the form of powder igneous rocks. Making the test material using the method of variation of grain size of 60 mesh and 80 mesh. At this stage of characterization using X-Ray tool Difraction (XRD) to determine its content and its compounds and crystal system of the sample.

Research flow chart showed in Figure 1;

RESULT AND DISCUSSION

Characterization using XRD is characterization process that aims to determine the crystal structure of igneous rock samples that include several parameters, i.e: the crystal structure, lattice constants, and the field diffraction (Sartono, 2006) The results of XRD characterization of igneous rock samples can be seen in Table 1 to 4 and Figure 2 to 5.

Based on the XRD results obtained for samples of igneous rocks from the village Ogowele with a size of 60 mesh looks compound Fe3O4 (magnetite) has a 21.6% weight percent, SiO2 (quartz) of 52.2%, MnO2 (pyrolusite) by 9, 22%, and 17% Al2.66O4. It is clear that the compound has the highest weight percent compound SiO2 (quartz). As for the compound Fe₃O₄ very small. Fe₃O₄ compound has a cubic crystal structure or

isometric, based on the lattice constant of a=b=c=8.375~Å with crystallographic angle $\alpha=\beta=\gamma=90~^\circ.$ SiO $_2$ and Al $_2$ O $_3$ compound has a hexagonal crystal structure with lattice constants $a=b\neq c$ and crystallographic angle $\alpha=\beta\neq\gamma=120o.$ While the compound MnO $_2$ seen that the lattice constant a=b=4.492~Å Adan c=2.924 and has a crystallographic angle $\alpha=\beta=\gamma=90~^\circ$ so that the compound MnO $_2$ has a tetragonal crystal structure.

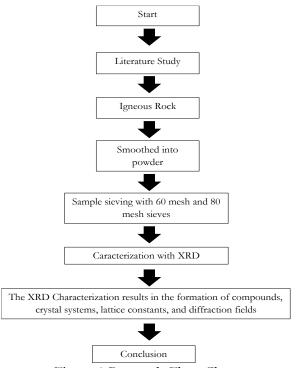


Figure 1 Research Flow Chart

Different results shown by the results of the characterization of the rock sample size of 80 mesh which Fe3O4 by 22%, 53% compound SiO₂, MnO₂ by 8.6% and 17.1% Al₂O₃. The difference in results is due to the sample size. The finer the sample, the more accurate the phases were detected.

Based on the XRD results it can be said that the rock came from the ogowele village is classified as alkaline igneous rocks (andesite) because it is dominated by high SiO₂ compounds.

In igneous rock samples from the village Bajugan 60 mesh size was detected only 3 compounds which amounted to 39.7% Fe₃O₄, 32.7% SiO₂, and Al₂O₃ compounds by 28%. While the sample size of 80 mesh detected four compounds, namely by 40% Fe₃O₄, SiO₂ compounds by 33%, Al₂O₃ 24.9% and 2.1% Mn₃O₄ compound. Igneous rock samples Bajugan village also has a crystal structure similar to igneous rock samples Ogowele village because the resulting compound is also the same. Fe₃O₄ compound has a cubic crystal structure / isometric, based on the lattice constant of a = b = c = 8,385Å the angle is $\alpha = \beta$ crystallography = $\gamma = 90^{\circ}$ dan

field diffraction [311]. SiO₂ and Al₂O₃ compound has a hexagonal crystal structure with lattice constants $a=b\neq c$ and crystallographic angle $\alpha=\beta\neq\gamma=120^{\circ}$ having SiO₂ diffraction field is [101] and Al₂O₃ is [100]. While the compound MnO₂ seen that the lattice constant a=b

= c = 5,886Å and 2,9,54Å and has a crystallographic angle α = β = γ = 90 ° and the field diffraction [211] so that the compound MnO₂ has a tetragonal crystal structure.

Table 1. Compound with crystal system of XRD result of Ogowele rock 60 mesh size.

No	Compound	Content (%)	2θ (°)	d-Value (Å)	Int (cps)	Crystal Structure	crystallographic angle	Lattice Contant	Diffraction field
1			35,530	2,5246	218				
2	Fe ₃ O ₄	21,6	30,228	2,9542	47	Cubik	$\alpha = \beta = \gamma =$	a = b = c	[3 1 1]
3	1 6304	21,0	43,157	2,0944	74	Cubik	90°	С	[511]
4			62,61	1,4825	150				
5			26,726	3,3328	1387				
6	SiO_2	52,2	20,945	4,2378	319	Hexagonal	$\alpha = \beta \neq \gamma =$	$a = b \neq$	[1 0 1]
7	5102	32,2	39,609	2,2735	51	Ticxagonai	120°	С	[1 0 1]
8			60,048	1,5394	167				
9			28,053	3,1781	498			• /	
10	MnO_2	9,2	36,627	2,4514	62	Tetragonal	$\alpha = \beta = \gamma = 90^{\circ}$	$a = b \neq c$	[1 1 0]
11			57,04	1,6132	99				
12			37,49	2,397	43			,	
13	Al ₂ .66.O ₄	17	45,939	1,9739	130	Cubic	$\alpha = \beta = \gamma = 90^{\circ}$	a = b = c	[4 0 0]
14	1112.00.04		68,405	1,3703	125				

Table 2. Compound with crystal system of XRD result of Ogowele rock 80 mesh size

No	Compound	Content (%)	2θ (°)	d- Value (Å)	Int (cps)	Crystal Structure	crystallographic angle	Lattice Contant	Diffraction field
1			30,142	2,9624	312				
2	Fe ₃ O ₄	22	35,463	2,5292	389	Cubic	$\alpha = \beta = \gamma = 90^{\circ}$	a = b = c	[3 1 1]
3			62,54	1,4839	181				
4			20,890	4,2488	560				
5			26,674	3,3392	650		0. /		
6	SiO_2	53	36,57	2,455	117	Hexagonal	$\alpha = \beta \neq \gamma = 120^{\circ}$	$a = b \neq c$	[1 0 1]
7			39,459	2,2818	66				
8			50,16	1,8173	104				
9	MnO_2	8,6	22,082	4,022	136	Orthorombik	$\alpha = \beta = \gamma = 90^{\circ}$	$a \neq b \neq c$	[1 1 0]
10			24,236	3,6692	81		0. /		[0 1 2]
11	$Al_2.O_3$	17,1	43,01	2,101	96	Hexagonal	$\alpha = \beta \neq \gamma = 120^{\circ}$	$a = b \neq c$	[1 1 3]
12			56,94	1,6158	99				[1 1 6]

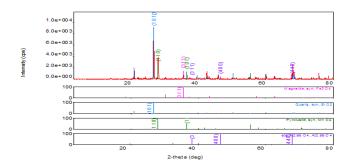


Figure 2. XRD result of igneous rock samples Ogowele village $60\ \textit{Mesh}$ size

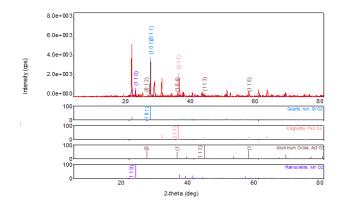


Figure 3. XRD result of igneous rock samples Ogowele village 80 Mesh size

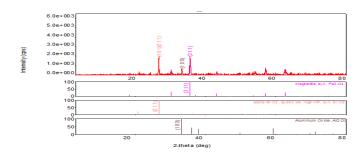


Figure 4. XRD result of igneous rock samples from Bajugan village 60 Mesh size

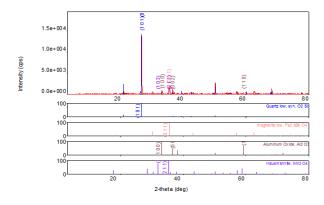


Figure 5. XRD result of igneous rock samples from Bajugan village 80 Mesh size

No	Compound	Content (%)	2θ (°)	d- Value (Å)	Int (cps)	Crystal Structure	crystallographic angle	Lattice Contant	Diffraction field
1			30,14	2,962	125				
2	Fe ₃ O ₄	39,7	35,529	2,5247	550		$\alpha = \beta = \gamma = 90^{\circ}$	a = b = c	[3 1 1]
3	1 0304	37,1	57,04	1,6132	216	Cubic	$\alpha - \beta - \gamma - 50$		[3 1 1]
4			62,61	1,4824	225				
4	SiO ₂	32,7	26,739	3,3313	285	Hexagonal	$\alpha = \beta \neq \gamma =$	$a = b \neq c$	[0 1 1]
5	0102	<i>52</i> , ⁷	54,12	1,6931	216	Tiexagonai	120°		[0 1 1]
6	Al ₂ .O ₃	28	33,300	2,6883	156	Hexagonal	$\alpha = \beta \neq \gamma = 120^{\circ}$	$a = b \neq c$	[0 1 2]

Table 3. Compound and crystal system of XRD result of Bajugan rock 60 mesh size

Table 4. Compound and crystal system of XRD result of Bajugan rock 80 mesh size

No	Compound	Content (%)	2θ (°)	d- Value (Å)	Int (cps)	Crystal Structure	crystallographic angle	Lattice Contant	Diffraction field
1			30,214	2,9555	110				
2	Fe ₃ O ₄	40	35,472	2,5285	552	Cubic	$\alpha = \beta = \gamma = 90^{\circ}$	a = b = c	[3 1 1]
3	1 0304	40	43,12	2,0962	84	Cubic	$\alpha - \beta - \gamma = 50$	a – b – c	[511]
4			62,60	1,4828	250				
5			20,981	4,2305	199				
6			26,679	3,3386	1871		0. /		
7	SiO ₂	33	42,520	2,1243	57	Hexagonal	$\alpha = \beta \neq \gamma = 120^{\circ}$	$a = b \neq c$	[1 0 1]
8			50,215	1,8153	368				
9			67,81	1,3809	36				
10	Mn ₂ O ₄	2.1	53,98	1,697	182	Tetraconal	$\alpha = \beta = \gamma = 90^{\circ}$	$a = b \neq c$	[2 1 1]
11	Mn ₃ O ₄	2,1	56,96	1,6154	167	- Tetragonal	$\alpha - \beta - \gamma - 90^{\circ}$	a — D + C	[2 1 1]
12	Al ₂ .O ₃	24,9	33,20	2,696	168	Hexagonal	$\alpha = \beta \neq \gamma = 120^{\circ}$	$a = b \neq c$	[1 0 0]

Based on the above results it is clear that the composition of rock samples from Bajugan village dominated by the Fe3O4 compound. With a high content of the Fe3O4 compound then rocks from the Bajugan village very useful as a main raw material of iron / steel.

CONCLUSION

Based on the analysis and XRD characterization in both the rock samples indicate that the detected magnetic minerals are compounds Fe3O4 (Magnetite). Where the igneous rocks from the village Ogowele have Fe3O4 content of 22%, while rocks from Bajugan village has a fairly high Fe3O4 content of about 40%.

From the results of XRD and proof theory calculations for the two rocks is known that the compound Fe3O4 from each sample has a cubic crystal structure / isometric with diffraction field or index field is [3 1 1] and has a lattice constant a=b=c. In a sample size of 60 mesh stone Ogowele Fe3O4 obtained compound with the results of XRD lattice constant values are $a=b=c=8.375 \, \text{Å}$ whereas the theoretical calculation that $a=b=c=8.372 \, \, \text{Å}$. While the rock sample size of 60 mesh Village Bajugan lattice constant values obtained XRD results are $a=b=c=8.385 \, \text{Å}$ while the results of theoretical calculations are $a=b=c=8.372 \, \, \text{Å}$.

References

- [1] Bijaksana, S, F., 2012, Journal of Geophysics: *Analysis of magnetic minerals in ITB environmental issues*, ITB, Bandung.
- [2] Department of Industry, 2012, *Potential Mineral Resources in Toli-Toli*, Toli-Toli, Central Sulawesi.
- [3] Graha, Doddy, S., 1987, Rocks and Minerals, Nova, Bandung.
- [4] Hunt, Christopher P., Moskowitz, Bruce P., 1995, Magnetic properties of rocks and minerals, Rock Physics and Phase Relations: A Handbook of Physical Constants 3, Washington DC: American Geophysical Union, JLM 189-204.
- [5] Sartono, AA, 2012, X-ray diffraction (X-RD), Final project laboratory subject, Department of Physics, Faculty of Mathematics and Natural Science, University of Indonesia, Jakarta

52

DOI: 10.24845/ijfac.v2.i2.47

Indonesian Journal of Fundamental and Applied Chemistry

Article http://ijfac.unsri.ac.id

Determination of Magnetic Mineral Crystal Structure Using X-Ray Diffraction (XRD) on Igneous Rock from Ogolowe and Bajugan Village, Toli toli District Central Sulawesi

Musfirah Cahya Fajrah^{1,*}, Alia Mapesso ^{2,}, and Sandra Kasim ³

¹Physics Departement, Faculty of Mathematics and Natural Science, Institut Sains Dan Teknologi Nasional, Jakarta, Indonesia ^{2,3}Physics Departement, Faculty of Mathematics and Natural Science, Universitas Tadulako, Central Sulawesi, Indonesia

Abstract

Study of igneous rocks derived from Ogowele Village and Village Toli-Toli Bajugan has been conducted to determine the magnetic minerals contained in the igneous rocks, as well as determine the crystal system, lattice constants and field diffraction by comparison sieve 60 mesh and 80 mesh. Process characterization and analysis using X-Ray Diffraction (XRD). Characterization and analysis of the results showed that the compound was detected both rock samples Fe₃O₄, SiO₂, Al₂O₃ and MnO₂. Igneous rocks derived from Ogowele village is dominated by compounds SiO₂ (quartz) by 52% and rocks from Bajugan village dominated by the compound Fe₃O₄ (magnetite) by 40%. The crystal structure is cubic and hexagonal compound to compound Fe₃O₄ SiO₂. Fe₃O₄ compound cubic lattice constants are a = b = c is 8.375 Å. To compound the hexagonal SiO₂ ie a = b of 4.898 Å and c of 5.385 Å. Field diffraction on Fe₃O₄ compound is (3 1 1) and the SiO₂ compound that is (1 0 1).

Keywords: Laboratory wastewater, Alum sulphate, Poly Aluminum Chloride, Heavy metals, Coagulation

Abstrak (Indonesian)	Article Info
{Please privide the Indonesian Abstract session}	Received 2 April 2017
Kata kunci:	Received in revised 29 May 2017
	Accepted 5 June 2017
	Available online 15 June 2017

INTRODUCTION

The mining sector in Indonesia is one of the sectors which are the mainstay of government in generating foreign exchange. This is because Indonesia is one country that has many mineral resources. One area in Indonesia, Central Sulawesi, especially Toli-Toli is an area of huge potential for mining materials such as igneous rock which contains magnetic minerals. The spread of igneous rocks almost in 10 subdistricts in Toli Toli, including in the village and village Ogowele Bajugan (Department of Industry and Energy and Mineral Resources Kab.Toli-Toli, 2006).

Magnetic minerals in fact there is always naturally in rocks, soil, or sediments, despite the abundance quantitatively quite small at around 0.1% of the total mass of rock or sediment (Bijaksana, 2002). Magnetic minerals are minerals that have high magnetic properties. The magnetic mineral properties, the type and morphology

varied depending on source (Hunt and Moskowitz, 1995).

Igneous rocks (from Latin: ignis, "fire") is a rock that resulted from the freezing process of magma (Sipatriot, 2013). Basically, the majority (99%) igneous rock composed of main elements, namely: Oxygen, Silicon, Aluminum, Iron, Calcium, Sodium, Potassium and Magnesium. These elements form the main silicate minerals: Feldspar, Olivine, Piroksen, amphibole, quartz and mica. These minerals occupy more than 95% by volume of igneous rocks, and became the basis for the classification and explain the origin of magma (Graha, 1987).

Due to the lack of studies of magnetic minerals in igneous rocks in Toli-Toli it is necessary to identify more of the magnetic minerals contained in igneous rocks. Igneous rocks derived from Ogowele Village and Village Toli-Toli Bajugan can draw objects that contain magnets then chances are igneous rocks that have a fairly high Fe

^{*}Corresponding Author: fira.toana@gmail.com

content. For it will be the characterization of magnetic minerals contained in the igneous rocks using X-Ray Diffraction (XRD) which includes the formation of compounds, crystal system, lattice constants and fields of diffraction of the magnetic minerals of igneous rocks.

The objectives of this study is to determine the magnetic minerals contained in igneous rocks of the Ogowele and Bajugan village Toli-Toli District and determine the crystal system, lattice constants, and the diffraction plane of the magnetic minerals of igneous rocks.

EXPERIMENTAL SECTION

Research for the characterization of magnetic minerals of igneous rocks using XRD performed on two laboratories, namely: Laboratory of Soil Science, Faculty of Agriculture UNTAD and Microstructure Laboratory of Physics, State UNM, Makassar. The timing of the study is from March to August 2013.

In the preparation phase materials used in the form of powder igneous rocks. Making the test material using the method of variation of grain size of 60 mesh and 80 mesh. At this stage of characterization using X-Ray tool Difraction (XRD) to determine its content and its compounds and crystal system of the sample.

Research flow chart showed;

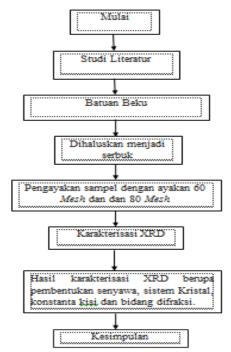


Figure 1 Research Flow Chart {Please change the language of the figure content into appropriate English language}

RESULT AND DISCUSSION

Characterization using XRD is characterization process that aims to determine the crystal structure of igneous rock samples that include several parameters, i.e: the crystal structure, lattice constants, and the field diffraction (Sartono, 2006) The results of XRD characterization of igneous rock samples can be seen in Table 1 to 4 and Figure 2 to 5.

Based on the XRD results obtained for samples of igneous rocks from the village Ogowele with a size of 60 mesh looks compound Fe3O4 (magnetite) has a 21.6% weight percent, SiO2 (quartz) of 52.2%, MnO2 (pyrolusite) by 9, 22%, and 17% Al2.66O4. It is clear that the compound has the highest weight percent compound SiO2 (quartz). As for the compound Fe3O4 very small. Fe3O4 compound has a cubic crystal structure or isometric, based on the lattice constant of a = b = c = 8.375 Å with crystallographic angle $\alpha = \beta = \gamma = 90$ °. SiO2 and Al2O3 compound has a hexagonal crystal structure with lattice constants $a = b \neq c$ and crystallographic angle $\alpha = \beta \neq \gamma = c$ 120o. While the compound MnO2 seen that the lattice constant a = b = 4.492 Å Adan c = 2.924 and has a crystallographic angle $\alpha = \beta = \gamma = 90$ ° so that the compound MnO2 has a tetragonal crystal structure.

Different results shown by the results of the characterization of the rock sample size of 80 mesh which Fe3O4 by 22%, 53% compound SiO2, MnO2 by 8.6% and 17.1% Al2O3. The difference in results is due to the sample size. The finer the sample, the more accurate the phases were detected.

Based on the XRD results it can be said that the rock came from the ogowele village is classified as alkaline igneous rocks (andesite) because it is dominated by high SiO2 compounds.

In igneous rock samples from the village Bajugan 60 mesh size was detected only 3 compounds which amounted to 39.7% Fe3O4, 32.7% SiO2, and Al2O3 compounds by 28%. While the sample size of 80 mesh detected four compounds, namely by 40% Fe3O4, SiO2 compounds by 33%, Al2O3 24.9% and 2.1% Mn3O4 compound. Igneous rock samples Bajugan village also has a crystal structure similar to igneous rock samples Ogowele village because the resulting compound is also the same. Fe3O4 compound has a cubic crystal structure / isometric, based on the lattice constant of a = b = c = 8,385Å the angle is $\alpha = \beta$ crystallography = $\gamma = 90$ odan field diffraction [311]. SiO2 and Al2O3 compound has a hexagonal crystal structure with lattice constants $a = b \neq c$ and crystallographic angle $\alpha = \beta \neq \gamma = 1200$ having SiO2 diffraction field is [101] and Al2O3 is [100]. While the compound MnO2 seen that the lattice constant a = b = c= 5,886Å and 2,9,54Å and has a crystallographic angle α = $\beta = \gamma = 90$ ° and the field diffraction [211] so that the compound MnO2 has a tetragonal crystal structure.

Table 1. Compound with crystal system of XRD result of Ogowele rock 60 mesh size.

No	Compound	Content (%)	2θ (°)	d-Value (Å)	Int (cps)	Crystal Structure	crystallographic angle	Lattice Contant	Diffraction field
1			35,530	2,5246	218				
2	Fe ₃ O ₄	21,6	30,228	2,9542	47	Cubik	$\alpha = \beta = \gamma = 90^{\circ}$	a = b = c	(3 1 1)
3	1.6304	21,0	43,157	2,0944	74	Cubik	90°	С	(3 1 1)
4			62,61	1,4825	150				
5			26,726	3,3328	1387				
6	SiO ₂	52,2	20,945	4,2378	319	Hexagonal	$\alpha = \beta \neq \gamma =$	$a = b \neq$	(1 0 1)
7	5102	32,2	39,609	2,2735	51	TTCXagonai	120°	С	(1 0 1)
8			60,048	1,5394	167				
9			28,053	3,1781	498		0	1 /	
10	MnO_2	9,2	36,627	2,4514	62	Tetragonal	$\alpha = \beta = \gamma = 90^{\circ}$	$a = b \neq c$	(1 1 0)
11			57,04	1,6132	99				
12			37,49	2,397	43		0	,	
13	Al ₂ .66.O ₄	17	45,939	1,9739	130	Cubik	$\alpha = \beta = \gamma = 90^{\circ}$	a = b = c	(4 0 0)
14			68,405	1,3703	125				

Table 2. Compound with crystal system of XRD result of Ogowele rock 80 mesh size

No	Compound	Content (%)	2θ (°)	d- Value (Å)	Int (cps)	Crystal Structure	crystallographic angle	Lattice Contant	Diffraction field
1			30,142	2,9624	312			_	
2	Fe ₃ O ₄	22	35,463	2,5292	389	Cubic	$\alpha = \beta = \gamma = 90^{\circ}$	a = b = c	(3 1 1)
3			62,54	1,4839	181				
4			20,890	4,2488	560				
5			26,674	3,3392	650		0. /		
6	SiO ₂	53	36,57	2,455	117	Hexagonal	$\alpha = \beta \neq \gamma = 120^{\circ}$	$a = b \neq c$	(1 0 1)
7			39,459	2,2818	66				
8			50,16	1,8173	104				
9	MnO_2	8,6	22,082	4,022	136	Orthorombik	$\alpha = \beta = \gamma = 90^{\circ}$	$a \neq b \neq c$	(110)
10			24,236	3,6692	81		- 0	. ,	(012)
11	Al ₂ .O ₃	17,1	43,01	2,101	96	Hexagonal	$\alpha = \beta \neq \gamma = 120^{\circ}$	$a = b \neq c$	(1 1 3)
12			56,94	1,6158	99				(1 1 6)

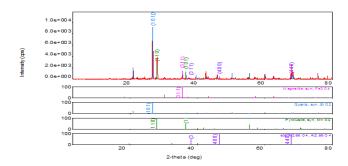


Figure 2. XRD result of igneous rock samples Ogowele village 60~Mesh size

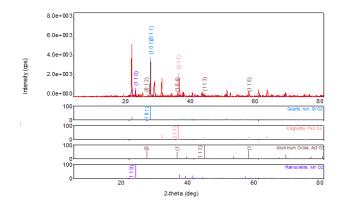


Figure 3. XRD result of igneous rock samples Ogowele village 80 Mesh size

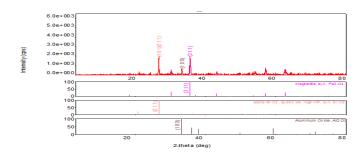


Figure 4. XRD result of igneous rock samples from Bajugan village 60 Mesh size

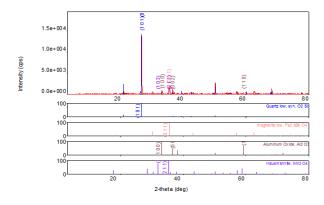


Figure 5. XRD result of igneous rock samples from Bajugan village 80 Mesh size

No	Compound	Content (%)	2θ (°)	d- Value (Å)	Int (cps)	Crystal Structure	crystallographic angle	Lattice Contant	Diffraction field
1	Fe ₃ O ₄	39,7	30,14	2,962	125		$\alpha = \beta = \gamma = 90^{\circ}$	a = b = c	(3 1 1)
2			35,529	2,5247	550	Cubic			
3			57,04	1,6132	216				
4			62,61	1,4824	225				
4	SiO ₂	32,7	26,739	3,3313	285	Hexagonal	$\alpha = \beta \neq \gamma = 120^{\circ}$	$a = b \neq c$	(0 1 1)
5			54,12	1,6931	216				

156

Hexagonal

Table 3. Compound and crystal system of XRD result of Bajugan rock 60 mesh size

Table 4. Compound and crystal system of XRD result of Bajugan rock 80 mesh size

33,300

28

2,6883

No	Compound	Content (%)	2θ (°)	d- Value (Å)	Int (cps)	Crystal Structure	crystallographic angle	Lattice Contant	Diffraction field
1	Fe ₃ O ₄	40	30,214	2,9555	110	Cubic	$\alpha = \beta = \gamma = 90^{\circ}$	a = b = c	(3 1 1)
2			35,472	2,5285	552				
3			43,12	2,0962	84				
4			62,60	1,4828	250				
5	SiO ₂	33	20,981	4,2305	199	Hexagonal	$\alpha = \beta \neq \gamma = 120^{\circ}$	$a = b \neq c$	(1 0 1)
6			26,679	3,3386	1871				
7			42,520	2,1243	57				
8			50,215	1,8153	368				
9			67,81	1,3809	36				
10	- Mn ₃ O ₄	2,1	53,98	1,697	182	Tetragonal	$\alpha = \beta = \gamma = 90^{\circ}$	$a = b \neq c$	(2 1 1)
11			56,96	1,6154	167				
12	Al ₂ .O ₃	24,9	33,20	2,696	168	Hexagonal	$\alpha = \beta \neq \gamma = 120^{\circ}$	$a = b \neq c$	(1 0 0)

Based on the above results it is clear that the composition of rock samples from Bajugan village dominated by the Fe3O4 compound. With a high content of the Fe3O4 compound then rocks from the Bajugan village very useful as a main raw material of iron / steel.

CONCLUSION

 $Al_2.O_3$

Based on the analysis and XRD characterization in both the rock samples indicate that the detected magnetic minerals are compounds Fe3O4 (Magnetite). Where the igneous rocks from the village Ogowele have Fe3O4 content of 22%, while rocks from Bajugan village has a fairly high Fe3O4 content of about 40%.

From the results of XRD and proof theory calculations for the two rocks is known that the compound Fe3O4 from each sample has a cubic crystal structure / isometric with diffraction field or index field is [3 1 1] and has a lattice constant a = b = c. In a sample size of 60 mesh stone Ogowele Fe3O4 obtained compound with the results of XRD lattice constant values are a = b = c = 8,375Å whereas the theoretical calculation that a = b = c = 8.372 Å. While the rock sample size of 60 mesh Village Bajugan lattice constant values obtained XRD results are a = b = c = 8,385Å while the results of theoretical calculations are a = b = c = 8.372 Å.

 $\alpha = \beta \neq \gamma =$

 $a = b \neq c$

(012)

References

- [1] Bijaksana, S, F., 2012, Journal of Geophysics: *Analysis of magnetic minerals in ITB environmental issues*, ITB, Bandung.
- [2] Department of Industry, 2012, *Potential Mineral Resources in Toli-Toli*, Toli-Toli, Central Sulawesi.
- [3] Graha, Doddy, S., 1987, Rocks and Minerals, Nova, Bandung.
- [4] Hunt, Christopher P., Moskowitz, Bruce P., 1995, Magnetic properties of rocks and minerals, Rock Physics and Phase Relations: A Handbook of Physical Constants 3, Washington DC: American Geophysical Union, JLM 189-204.
- [5] Sartono, AA, 2012, X-ray diffraction (X-RD), Final project laboratory subject, Department of Physics, Faculty of Mathematics and Natural Science, University of Indonesia, Jakarta

DOI: 10.24845/ijfac.v2.i2.47