

Y A Y A S A N P E R G U R U A N C I K I N I INSTITUT SAINS DAN TEKNOLOGI NASIONAL

Jl. Moh. Kahfi II, Bhumi Srengseng Indah, Jagakarsa, Jakarta Selatan 12640 Telp. (021) 727 0090, 787 4645, 787 4647 Fax. (021) 786 6955, http://www.istn.ac.id E-mail:rektorat@istn.ac.id

SURAT PENUGASAN TENAGA PENDIDIK

Nomor: 311 /03.1-H/IX/2024 SEMESTER GANJIL TAHUN AKADEMIK 2024/2025

Nama

: Fathin Hamida, S.Si, M.Si.

Status: Tetap.

Nik

: 01.161376

Program Sarjana Prodi Farmasi

Jabatan Akademik : AA
Untuk melaksanakan tugas sebagai berikut:

Bidang	Perincian Kegiatan	Tempat	Jam/ Minggu	Kredit (SKS)	Keterangan
I	MENGAJAR DI KELAS (KULIAH/RESPONSI DAN LA	BORATORIUM)		(/	
PENDIDIKAN	Biologi Sel dan Molekuler (B)	Ruang HC-5		1	Rabu,08:00-09:40
DAN	Biologi Sel dan Molekuler (L)	Ruang HC-4		1	Rabu,08:00-09:40
PENGAJARAN	Botani Farmasi (B)	Ruang HC-5		1	Selasa, 08:00-10:30
	Botani Farmasi (L)	Ruang HC-5		1	Sabtu, 08:00-10:30
	Farmakognosi dan Fitokimia (C)	Ruang HC-6		1,3	Jumat ,08:00-14:00
	Kimia Bahan Pangan (B)	Ruang HC-7		1	Sabtu, 17:00-18:40
	Bimbingan Skripsi		3 Jam/Minggu	1	
	Menguji Tugas Akhir		3 Jam/Minggu	1	
II PENELITIAN	Penulisan Karya Ilmiah		6 Jam/Minggu	2	
III PENGABDIAN	Pelathan dan Penyuluhan		6 Jam/Minggu	2	
DAN MASYARAKAT					
IV	Pertemuan Ilmiah		3 Jam/Minggu	1	
Unsur Unsur Penunjang	Akreditasi		3 Jam/Minggu	1	
	Jumlah Total			14,3	

Kepada yang bersangkutan akan diberikan gaji/honorarium sesuai dengan peraturan penggajian yang berlaku di Institut Sains Dan Teknologi Nasional Penugasan ini berlaku dari tanggal 02 September 2024 sampai dengan tanggal 28 Februari 2025

Tembusan:

- 1. Wakil Rektor Bidang Akademik ISTN
- 2. Wakil Rektor Bidang Sumber Daya ISTN
- 3. Ka. Biro Sumber Daya Manusia ISTN
- 4. Kepala Program Studi Farmasi Fak. Farmasi

5. Arsip

Jakarta, 02 September 2024 Dekan

Dr. apt. Tiah Rachmatiah, M.Si)

AKTIVITAS ANTIOKSIDAN FORMULASI *LOTION* EKSTRAK ETANOL DAUN BROKOLI (*BRASSICA OLERACEA* L.)

Fathin Hamida^{1*}, Tamara Blyzensky², Yayah Siti Djuhariah³, Fahri Fahrudin⁴ Institut Sains dan Teknologi Nasional^{1,2,3}, Universitas Islam Negeri Syarif Hidayatullah Jakarta⁴ *Corresponding Author: fathinfarmasi@istn.ac.id

ABSTRAK

Brokoli (Brassica oleracea L.) merupakan salah satu jenis tanaman yang mempunyai kandungan senyawa flavonoid, tanin, fenolik yang berfungsi sebagai antioksidan. Bagian tanaman brokoli yang sering dikonsumsi adalah bunganya sedangkan daunnya sangat jarang dikonsumsi bahkan hanya menjadi limbah. Penelitian ini bertujuan untuk membuat formulasi sediaan lotion yang ditambahkan ekstrak etanol daun brokoli dan menguji aktivitas antioksidannya dengan menggunakan metode DPPH. Ekstraksi etanol daun brokoli dilakukan secara maserasi menggunakan pelarut etanol 70%. Sediaan lotion ekstrak etanol daun brokoli disiapkan menjadi tiga formula yaitu F0 (lotion tanpa penambahan ekstrak), F1 (penambahan ekstrak sebanyak 2%), F2 (penambahan ekstrak sebanyak 4%), dan F3 (penambahan ekstrak sebanyak 6%). Hasil evaluasi mutu fisik sediaan *lotion* yang ditambahkan dengan ekstrak daun brokoli menunjukkan bahwa lotion memiliki aroma khas, berbentuk semi padat, homogen, tipe emulsi minyak dalam air (o/w), pH 6,50-6,88, daya sebar 6,5-6,97 cm, daya lekat 4,55-4,75 detik, dan viskositas 7041-10949 cPs. Aktivitas antioksidan ekstrak daun brokoli sebesar 89,64 ppm yang termasuk kategori antioksidan kuat. Sedangkan aktivitas antioksidan sediaan lotion ekstrak daun brokoli dengan konsentrasi 2%, 4% dan 6% mempunyai nilai IC₅₀ berturut-turut sebesar 872,49 ppm, 687,93 ppm, dan 342,27 ppm. Lotion ekstrak daun brokoli F1 dan F2 memiliki daya antioksidan sangat lemah, dan daya antioksidan lemah pada F3.

Kata kunci : antioksidan, brokoli, dpph, lotion

ABSTRACT

Broccoli (Brassica oleracea L.) is a type of plant that contains flavonoid, tannin, phenolic compounds that function as antioxidants. The part of the broccoli plant that is often consumed is the flower while the leaves are rarely consumed and even become waste.. This study aimed to formulate lotion preparation that added ethanolic extracts of broccoli leaves and test its antioxidant activity using the DPPH method. Extraction of broccoli leaves was done by maceration using 70% ethanol solvent. The lotion of broccoli leaves ethanolic extracts were prepared into three formulas namely F1 was added 2% extract, F2 was added 4% extract, and F3 was added 6%. The results of physical quality evaluation of lotion preparations. The results of the physical quality evaluation of lotion preparations added with broccoli leaf extract show that the lotion has a distinctive aroma, semi-solid, homogeneous, emulsion type. semi-solid, homogeneous, oil-in-water emulsion type (o/w), pH 6.50-6.88, spreadability 6.5-6.97 cm. 6.5-6.97 cm spread, 4.55-4.75 seconds adhesion, and 7041-10949 cPs viscosity. The antioxidant activity of broccoli leaf extract was 89.64 ppm, which is categorized as strong antioxidant. While the antioxidant activity of lotion broccoli leaves ethanolic extracts with concentrations of 2%, 4% and 6% have respectively IC50 values of 872.49 ppm, 687.93 ppm, and 342.27 ppm. Broccoli leaves ethanolic extract lotion F1 and F2 had very weak antioxidant activity, and weak antioxidant activity in F3.

Keywords : antioxidant, broccoli, dpph, lotion

PENDAHULUAN

Kulit merupakan organ sekresi yang terletak di bagian luar tubuh. Kulit berfungsi melindungi tubuh dari paparan sinar UV dan paparan polutan udara (Purwaningsih dkk., 2014). Paparan sinar UV yang berlebihan dapat menyebabkan penuaan dini serta kerusakan pada kulit yang ditandai dengan kulit keriput, kulit bersisik, kulit menjadi kering, dan kulit pecah-pecah (Madikasari dkk., 2017). Upaya pencegahan dan perlindungan kulit dari kerusakan akibat

paparan sinar UV dan polutan salah satunya dapat menggunakan *lotion* (Pujiastuti & Kristiani, 2019).

Lotion merupakan sediaan kosmetik yang termasuk dalam kelompok emolien dan mempunyai fungsi untuk memberikan kelembutan, melembabkan, serta dapat meningkatkan kecerahan warna kulit, sekaligus melindungi kulit dari sinar matahari (Romadhonni dkk., 2022). Salah satu inovasi dalam produk sediaan lotion adalah penambahan antioksidan. Antioksidan adalah senyawa yang berfungsi untuk melawan radikal bebas. Sumber radikal bebas yang menyebabkan kerusakan kulit antara lain yaitu sinar ultraviolet (UV), polusi udara, asap rokok, obat-obat tertentu dan zat-zat kimia karsinogenik (Ambari dkk., 2021). Terutama sinar ultra violet dalam kondisi berlebih dapat menyebabkan berbagai masalah kulit seperti kemerahan, munculnya keriput, kulit bersisik, dan kulit kering. Penambahan antioksidan ke dalam sediaan lotion, membuat produk tersebut tidak hanya berfungsi sebagai pelembab tetapi juga dapat meregenerasi kulit serta menghilangkan kerutan akibat penuaan dini (Dominica & Handayani, 2019). Antioksidan alami banyak terdapat pada tumbuhan, sayuran dan buahbuahan. Salah satu tanaman yang mengandung antioksidan yaitu brokoli (Sodamade dkk., 2024).

Brokoli (*Brassica oleracea* L.) merupakan salah satu jenis tanaman sayuran yang tergolong dalam keluarga kubis-kubisan (*Brassicaceae*) (Deepa dkk., 2020). Umumnya bagian tanaman brokoli hanya dimanfaatkan bunganya saja, sedangkan batang dan daunnya terbuang sebagai limbah. Padahal Daun brokoli mempunyai kandungan antioksidan paling tinggi dibandingkan bunga dan batangnya. Daun brokoli memiliki kandungan vitamin C (7.673 mg/100g), klorofil (1746.198 mg/kg), vitamin K (226.423 μg/g), fenolik (24210.120 mg/kg), flavonoid (15239.947 mg/kg) dan daya antioksidan yang sangat kuat dengan nilai IC₅₀ sebesar 25,215 ppm (Devi dkk., 2023).

Terdapat beberapa metode yang dapat digunakan untuk menentukan aktivitas antioksidan yaitu DPPH, ABTS, FRAP, ORAC dan CUPRAC. Metode uji analisis kualitatif antioksidan yang digunakan dalam penelitian ini adalah metode DPPH. Metode uji DPPH memiliki beberapa kelebihan yaitu dapat diaplikasikan secara mudah, cepat, dan akurat untuk melakukan pengujian kemampuan penangkapan radikal dari berbagai senyawa (Romadhon dkk., 2023). Sejauh ini penelitian mengenai formulasi sediaan *lotion* yang ditambahkan dengan ekstrak etanol daun brokoli belum pernah ada. Oleh karena itu, penelitian ini bertujuan untuk membuat formulasi sediaan *lotion* yang ditambahkan ekstrak etanol daun brokoli dan diuji aktivitas antioksidannya dengan metode DPPH.

METODE

Penelitian dilaksanakan di Laboratorium Kimia Farmasi, Laboratorium Teknologi Farmasi, Laboratorium Farmasetika, dan Laboratorium Penelitian, Prodi Farmasi, Fakultas Farmasi, Institut Sains dan Teknologi Nasional. Penelitian dilaksanakan sejak bulan November 2023 sampai dengan Juli 2024.

Alat dan Bahan

Alat

Alat-alat yang digunakan ialah gelas beaker, bejana kaca maserasi, kertas saring, botol plastik untuk lotion, pH meter, alat uji daya sebar, alat uji daya lekat, timbangan analitik, *hot plate*, viskometer, *rotary evaporator*, kulkas, oven dan spektrofotometer UV-Vis.

Bahan

Bahan yang digunakan dalam penelitian ini antara lain daun segar brokoli, etanol 70%, reagen untuk skrining fitokimia diantaranya NH₃ 25%, CHCl₃, HCl, *n*-heksan, FeCl₃, NaNo₂,

AlCl₃, NaOH, H₂SO₄, anhidra asetat, pereaksi Dragendroff, Mayer, Bouchardat. Bahan dalam pembuatan *lotion* diantaranya asam stearate, parafin cair, gliserin, setil alkohol, trietanolamin, metil paraben, propil paraben, akuades. Bahan uji DPPH yaitu serbuk DPPH, vitamin C dan etanol p.a.

Prosedur Penelitian

Determinasi Tanaman Brokoli

Determinasi tanaman brokoli dilakukan di Laboratorium Biologi FMIPA, Universitas Bengkulu.

Pembuatan Serbuk Simplisia Daun Brokoli

Serbuk daun brokoli dibuat dari daun segar brokoli sebanyak 4,9 kg. Tahap awal yang dilakukan yaitu sortasi basah dengan memisahkan bagian daun yang rusak, selanjutnya dilakukan pencucian dengan air mengalir hingga bersih. Setelah itu, dilakukan perajangan dan pengeringan yang dilakukan dengan cara dikering anginkan di ruang terbuka yang terhindar dari sinar matahari selama 7 hari. Kemudian dilakukan sortasi kering dan dihaluskan menggunakan blender.

Pembuatan Ekstrak Etanol Daun Brokoli

Sebanyak 250 g serbuk daun brokoli dimasukan ke dalam bejana kaca maserasi, lalu ditambahkan pelarut etanol 70% sampai serbuk terendam, ditutup bejana maserasi dengan rapat menggunakan alumunium foil pada bagian tutupnya dan di diamkan selama 3 hari sambil sekali-kali diaduk. Proses ini dilakukan sebanyak 3 x 24 jam, kemudian disaring untuk memisahkan filtrat dan ampasnya. Filtrat yang diperoleh dikumpulkan dalam botol. Setelah proses pertama dilakukan, kemudian ampas 1 diremaserasi dengan menggunakan pelarut etanol 70% yang baru selama 2 hari, kemudian disaring dan didapatkan filtrat 2. Dan terakhir dilakukan kembali remaserasi dengan pelarut etanol 70% selama 2 hari. Filtrat yang didapat dikumpulkan selanjutnya dilakukan proses pemekatan dengan *rotary evaporator* pada suhu 50 °C hingga diperoleh ekstrak kental.

Skrining Fitokimia

Skrining fitokimia yang dilakukan meliputi uji alkaloid, tanin, saponin, flavonoid, steroid dan terpenoid.

Uji Aktivitas Antioksidan

Pembuatan Larutan Stok DPPH 100 ppm

Sebanyak 10 mg serbuk DPPH dilarutkan dengan 100 mL etanol p.a dalam labu ukur 100 mL, lalu dikocok hingga homogen dan diperoleh larutan dengan konsentrasi 100 ppm.

Pembuatan Larutan Baku DPPH

Larutan DPPH 30 ppm dibuat dengan cara dipipet 15 mL larutan DPPH 100 ppm kemudian dimasukkan kedalam labu ukur 50 mL, lalu dilarutkan dengan etanol p.a sampai tanda batas 50 mL.

Pembuatan Kurva Kalibrasi

Larutan DPPH dengan konsentrasi 15, 20, 25, 30, dan 35 ppm kemudian diukur absorbansinya pada panjang gelombang maksimum yang telah ditentukan.

Penentuan Panjang Gelombang Maksimum DPPH

Larutan DPPH 25 ppm dimasukkan ke dalam kuvet, kemudian diukur absorbansi pada rentang panjang gelombang dari λ =400 hingga λ =800 nm menggunakan spektrofotometer UV-Vis. Panjang gelombang yang menunjukkan nilai serapan tinggi merupakan panjang gelombang maksimum.

Pembuatan Larutan Induk dan Larutan Seri Ekstrak Daun Brokoli

Larutan induk ekstrak daun brokoli 1000 ppm dibuat dengan cara menimbang 100 mg ekstrak kental daun brokoli, lalu dimasukkan kedalam labu ukur 100 mL kemudian ditambahkan etanol p.a sampai tanda batas 100 mL dan dikocok hingga homogen. Kemudian dibuat larutan seri konsentrasi sebesar 150 ppm, 200 ppm, 250 ppm, 300 ppm, dan 350 ppm dengan cara dipipet 1,5 mL; 2 mL; 2,5 mL; 3 mL; dan 3,5 mL, lalu dimasukkan kedalam labu ukur 10 mL dan ditambahkan etanol p.a sampai tanda batas 10 mL.

Pembuatan Larutan Induk dan Larutan Seri sediaan *Lotion* Ekstrak Etanol Daun Brokoli

Larutan induk sediaan *lotion* daun brokoli 1000 ppm dibuat dengan cara menimbang 100 mg masing-masing sediaan *lotion*, lalu dimasukkan kedalam labu ukur 100 mL kemudian ditambahkan etanol p.a sampai tanda batas dan dikocok hingga homogen. Kemudian dibuat larutan seri konsentrasi sebesar 150 ppm, 200 ppm, 250 ppm, 300 ppm, dan 350 ppm dengan cara dipipet 1,5 mL; 2 mL; 2,5 mL; 3 mL; dan 3,5 mL, lalu dimasukkan kedalam labu ukur 10 mL dan ditambahkan etanol p.a sampai tanda batas 10 mL.

Pembuatan Larutan Induk dan Larutan Seri Vitamin C

Dibuat larutan stok 100 ppm dengan cara vitamin C ditimbang sebanyak 1 mg, kemudian dilarutkan dengan etanol absolut sambil diaduk dan dihomogenkan lalu dicukupkan volumenya hingga 10 ml. Selanjutnya dibuat seri konsentrasi 2 ppm, 3 ppm, 4 ppm, 5 ppm dan 6 ppm dengan cara dipipet 0,2 mL; 0,3 mL; 0,4 mL; 0,5 mL; dan 0,6 mL, lalu dimasukkan kedalam labu ukur 10 mL dan ditambahkan etanol p.a sampai tanda batas 10 mL.

Pengukuran Absorbansi Larutan Seri Ekstrak Daun Brokoli

Masing-masing larutan ekstrak 150 ppm, 200 ppm, 250 ppm, 300 ppm, dan 350 ppm dipipet sebanyak 1 mL lalu dimasukkan ke dalam tabung falcon, dan ditambahkan 2 mL larutan DPPH 30 ppm larutan dihomogenkan, masing-masing larutan diukur absorbansinya pada panjang gelombang maskimal (517,50 nm).

Pengukuran Absorbansi Larutan Seri Sediaan Lotion

Masing-masing larutan seri *lotion* 150 ppm, 200 ppm, 250 ppm, 300 ppm, dan 350 ppm dipipet sebanyak 1 mL lalu dimasukkan ke dalam tabung falcon, dan ditambahkan 2 mL larutan DPPH 30 ppm larutan dihomogenkan, masing-masing larutan diukur absorbansinya pada panjang gelombang maskimal (517,50 nm).

Pengukuran Absorbansi Larutan Seri Vitamin C

Masing-masing larutan seri vitamin C 2 ppm, 3 ppm, 4 ppm, 5 ppm, dan 6 ppm dipipet sebanyak 1 mL lalu dimasukkan ke dalam tabung falcon, dan ditambahkan 2 mL larutan DPPH 30 ppm larutan dihomogenkan, diamati absorbansi pada masing-masing konsentrasi.

Perhitungan Persen Inhibisi dan Nilai IC₅₀ (*Inhibitory Concentration* 50%)

$$\%~Aktivitas~Antioksidan = \frac{Abs~Blanko - Abs~Sampel}{Abs~Blanko} \times 100\%$$

Persamaan Regesi Linear y=a+bx

Dimana: Y = 50 dan $x = IC_{50}$

Perhitungan nilai IC₅₀ diperoleh dengan cara membuat persamaan garis regesi linier yang menghubungkan antara %inhibisi terhadap konsentrasi larutan uji tiap sampel sehingga didapatkan persamaan y=a+bx. Nilai y diganti dengan angka 50, sehingga didapatkan nilai x yang menunjukkan nilai IC₅₀. Nilai IC₅₀ menggambarkan konsentrasi ekstrak yang mampu menghambat 50% oksidasi. Daya antioksidan berdasarkna nilai IC₅₀ diklasifikasikan sebagai berikut (Putri & Lubis, 2020): IC₅₀ <50 ppm (sangat kuat), 50-100 ppm (kuat), 101-250 ppm (sedang), 250-500 ppm (lemah) dan >500 ppm (sangat lemah).

Pembuatan Sediaan Lotion

Formula Sediaan Lotion

Berikut adalah formula pembuatan sediaan *lotion* yang telah dimodifikasi dari Rosi dkk., 2023:

Tabel 1. Rancangan Formula Pembuatan Sediaan Lotion

	Formula	Formula (b/b)			
Bahan	F0 F1 F2		F2	F3	- Kegunaan
Ekstrak Daun brokoli	-	2	4	6	Zat Aktif
Setil Alkohol	2	2	2	2	Penstabil
Asam Stearat	6	6	6	6	Emulglator
Trietanolamin	2	2	2	2	Pengelmusi
Paraffin Cair	7	7	7	7	Emolien
Gliserin	5	5	5	5	Humektan
Metil Paraben	0,2	0,2	0,2	0,2	Pengawet
Propil Paraben	0,1	0,1	0,1	0,1	Pengawet
Akuades	Ad 100	Ad 100	Ad 100	Ad 100	Pelarut

Pembuatan Sediaan Lotion

Semua bahan dasar pembuatan lotion setil alkohol, asam stearate, parafin cair, propil paraben, triethanolamine, gliserin, metil paraben dan akuades ditimbang dan dipisahkan menjadi 2 bagian yaitu fase minyak dan fase air. Langkah selanjutnya fase minyak (setil alkohol, asam stearat, parafin cair, propil paraben) dan fase air (triethanolamine, gliserin, metil paraben dan akuades) masing-masing dipanaskan dalam beaker glass di atas hot plate pada suhu 70°C hingga homogen. Lalu dicampurkan fase minyak yang telah dileburkan kedalam fase air dan dihomogenkan menggunakan magnetic stirer hingga kedua fase homogen. Kemudian dimasukkan ekstrak etanol daun brokoli terus diaduk selama satu menit hingga homogen dan membentuk lotion. Setelah terbentuk lotion, dilakukan evaluasi sediaan sebelum dan setelah cycling test meliputi uji organoleptis, uji homogenitas, uji daya sebar, uji dya lekat, uji pH, uji viskositas, dan uji tipe emulsi.

Evaluasi Sediaan Lotion

Evaluasi sediaan *lotion* dilakukan sebelum dan sesudah uji stabilitas (*cycling test*) pada suhu 4°C selama 24 jam dan pada suhu 40°C selama 24 jam dan dilakukan selama 6 siklus.

Uii Organoleptis

Pengujian organoleptis dilakukan dengan mengamati tampilan fisik seperti perubahan bentuk, warna, aroma dari sediaan *lotion*.

Uji Tipe Emulsi

Uji tipe emulsi dilakukan dengan metode pewarnaan dengan cara sejumlah *lotion* ditambahkan beberapa tetes *methylen blue* dan sudan III. Jika *lotion* berwarna seragam saat ditambah *methylen blue*, maka jenis *lotion* tersebut minyak dalam air (O/W) dan sebaliknya jika ditambah sudan III *lotion* terdispersi secara rata maka tipe emulsi sediaan yaitu air dalam minyak (W/O).

Uji Homogenitas

Pengujian homogenitas *lotion* dilakukan dengan cara diambil 0,1 g sediaan *lotion* kemudian dioleskan tipis pada kaca objek secara merata. Kemudian diamati adanya butiran-butiran kasar.

Uji pH

Uji pH dilakukan dengan cara mencelupkan elektroda pH meter ke dalam *lotion* dan dicatat hasil yang tertera di pH meter. Menurut SNI 16-4399-1996 pH yang baik bagi sediaan kosmetik untuk kulit adalah 4,5-8,0.

Uji Daya Lekat

Sebanyak 0,1 g sediaan *lotion* diletakkan di atas kaca objek, kemudian ditekan dengan beban 1 kg selama 5 menit. Setelah itu beban diangkat dari kaca objek kemudian dicatat waktu pelepasan krim dari kaca objek. Persyaratan daya lekat yaitu lebih dari 4 detik.

Uji Daya Sebar

Sebanyak 0,5 g sediaan *lotion* diletakkan ditengah kaca, kemudian diletakkan kaca yang lain di atas sediaan *lotion* dan diberi beban sebesar 150 gam dengan rentang waktu 1-2 menit, lalu diukur diameter penyebarannya. *Lotion* memenuhi syarat jika daya sebar berada pada rentang 5-7 cm.

Uji Viskositas

Sebanyak 100 g sediaan *lotion* dimasukkan ke dalam gelas beaker 100 mL kemudian viskositasnya diukur menggunakan *Viscometer* NDJ-8S, dengan menggunakan spindle no 4 dengan kecepatan 30 rpm. Syarat viskositas *lotion* menurut SNI 16-4399-1996 yaitu antara 2000-50000 cP.

HASIL

Determinasi Tanaman

Hasil determinasi menunjukkan bahwa tanaman yang digunakan dalam penelitian ini yaitu *Brassica oleracea* L. dari ordo Brassicales dan famili Brassicaceae yang telah disahkan dengan surat verifikasi Laboratorium nomor 189/UN30.28.LAB.Biologi/PP/2024.

Pembuatan Serbuk Simplisia Daun Brokoli

Berdasarkan hasil pengeringan 4,9 kg daun brokoli segar diperoleh serbuk simplisia sebanyak 250 g. Pemeriksaan organoleptis menunjukkan bahwa serbuk daun brokoli memiliki aroma khas, dan berwarna cokelat kehijauan.

Pembuatan Ekstrak

Berdasarkan hasil ekstraksi 250 g serbuk simplisia daun brokoli di dalam 5500 mL etanol 70% di peroleh ekstrak kental sebanyak 62,32 g (Tabel 2). Karakteristik organoleptis ekstrak

daun brokoli memiliki tekstur ekstrak kental, berwarna coklat kehitaman, beraroma khas dengan nilai pH 6,06, dan nilai rendemen sebesar 24,93%.

Tabel 2. Nilai Rendemen Ekstrak Etanol Daun Brokoli

Simplisia Serbuk	Pelarut (Etanol 70%)	Maserat	Ekstrak Kental	Rendemen
250 g	5500 mL	4500 mL	62,32 g	24,93%

Skrining Fitokimia

Berdasarkan uji skrining fitokimia menggunakan pereaksi warna (kualitatif) menunjukkan bahwa serbuk dan ekstrak etanol daun brokoli mengandung tannin, flavonoid, dan steroid.

Tabel 3. Hasil Uji Skrining Fitokimia pada Serbuk dan Ekstrak Etanol Daun Brokoli

Identifikasi	Hasil		— Vatarangan	
Golongan	Serbuk	Ekstrak	— Keterangan	
Alkaloid	-	-	Tidak terbentuk endapan	
Tannin	+	+	Terbentuk warna hijau kehitaman	
Saponin	-	-	Terdapat buih tetapi kurang dari 1 cm dan tidak stabil	
Flavonoid	+	+	Terbentuk warna jingga-merah bata	
Steroid	+	+	Terbentuk warna hijau	

Keterangan:

- (+): menunjukkan hasil terdapat senyawa yang diuji
- (-): menunjukkan hasil tidak terdapat senyawa yang diuji

Aktivitas Antioksidan pada Vitamin C, Ekstrak Daun Brokoli, dan Sediaan *Lotion* Ekstrak Etanol Daun Brokoli dengan Metode DPPH

Uji aktivitas antioksidan pada penelitian ini menggunakan DPPH sebagai senyawa radikal yang dihambat. Aktivitas antioksidan ditunjukkan dengan nilai IC $_{50}$. IC $_{50}$ merupakan konsentrasi susbtrat yang dibutuhkan untuk menghambat 50% aktivitas DPPH. Pada penelitian ini dilakukan pengukuran absorban ekstrak daun brokoli, sediaan *lotion* dan kontrol positif vitamin C pada panjang gelombang λ =517,50 nm yang merupakan panjang gelombang maksimum DPPH. Berdasarkan nilai IC $_{50}$ yang diperoleh dapat diketahui bahwa ekstrak etanol daun brokoli memiliki daya antioksidan yang kuat. Aktivitas antioksidan sediaan lotion F1 dan F2 memiliki daya antioksidan yang kurang aktif atau sangat lemah. Aktivitas antioksidan sediaan lotion F3 memiliki daya antioksidan yang lemah. Formula sediaan *lotion* F0 (formula sediaan lotion tanpa ekstrak etanol daun brokoli) tidak memiliki aktivitas antioksidan sama sekali. Vitamin C pada pengujian ini berperan sebagai kontrol positif dan memiliki daya antioksidan sangat kuat.

Tabel 4. Aktivitas Antioksidan Vitamin C, Ekstrak Daun Brokoli dan Sediaan *Lotion* Ekstrak Etanol Daun Brokoli

Sampel Uji	Konsentrasi	Absorban	Persentase Inhibisi	IC50
	(ppm)	$(\lambda = 517,50 \text{ nm})$	(%)	(ppm)
Vitamin C	2	0,434	41,67	
	3	0,388	47,85	
	4	0,340	54,30	3,36
	5	0,306	58,87	
	6	0,243	67,34	
Ekstrak Daun	150	0,227	57,96	
Brokoli	200	0,194	64,07	
	250	0,152	71,85	89,64
	300	0,110	79,63	
	350	0,089	83,52	
Formula 0	150	0,376	33,33	4450.21
	200	0,376	33,33	4452,31
·	=			·

Volume 5, Nomor 4, Desember 2024

ISSN: 2774-5848 (Online) ISSN: 2777-0524 (Cetak)

(tanpa ekstrak	250	0,375	33,51	
daun brokoli)	300	0,373	33,87	
	350	0,372	34,04	
Formula 1	150	0,449	35,40	
(2% ekstrak	200	0,440	36,69	
daun brokoli)	250	0,435	37,41	872,49
	300	0,426	38,42	
	350	0,420	39,57	
Formula 2	150	0,442	37,22	
(4% ekstrak	200	0,429	39,06	
daun brokoli)	250	0,423	39,91	687,93
	300	0,417	40,77	
	350	0,410	41,76	
Formula 3	150	0,408	42,05	
(6% ekstrak	200	0,395	43,89	
daun brokoli)	250	0,376	46,59	342,27
	300	0,367	47,87	
	350	0,349	50,43	

Evaluasi Sediaan Lotion

Uji Organoleptis Sediaan Lotion Ekstrak Etanol Daun Brokoli

Berdasarkan uji organoleptis pada sediaan *lotion* ekstrak etanol daun brokoli diketahui bahwa tidak terjadi perubahan tekstur, warna dan aroma pada sediaan *lotion* sebelum dan setelah dilakukan uji stabilitas (*cycling test*) pada suhu 4 °C selama 24 jam dan pada suhu 40 °C selama 24 jam yang dilakukan selama 6 siklus.

Tabel 5. Hasil Pengujian Organoleptis Sediaan Lotion Ekstrak Etanol Daun Brokoli

Formula	Parameter	Hasil Pengamatan	
Formula		Sebelum Cycling Test	Sesudah Cycling Test
	Tekstur	Semi padat	Semi padat
Formula 0	Warna	Putih	Putih
	Aroma	Tidak berbau	Tidak berbau
	Tekstur	Semi padat	Semi padat
Formula I	Warna	Hijau muda	Hijau muda
	Aroma	Bau khas	Bau khas
	Tekstur	Semi padat	Semi padat
Fomula II	Warna	Hijau muda	Hijau muda
	Aroma	Bau khas	Bau khas
	Tekstur	Semi padat	Semi padat
Formula III	Warna	Hijau	Hijau
	Aroma	Bau khas	Bau khas

Keterangan

Formula 0 : Sediaan Lotion Tanpa Ekstrak Daun Brokoli

Formula 1 : Sediaan Lotion dengan Ekstrak daun Brokoli 2%

Formula 2 : Sediaan Lotion dengan Ekstrak daun Brokoli 4%

Formula 3 : Sediaan Lotion dengan Ekstrak daun Brokoli 6%

Uji Tipe Sediaan *Lotion*

Hasil uji tipe emulsi menunjukkan bahwa seluruh formula sediaan *lotion* ekstrak etanol daun brokoli merupakan tipe emulsi minyak dalam air (O/W) yang dapat dilihat pada tabel 6.

Tabel 6. Hasil Uji Tipe Sediaan Lotion Ekstrak Etanol Daun Brokoli

Hasil Pengujian				
Sebelum Cycling Test	Sesudah Cycling Test			
O/W	O/W			
O/W	O/W			
O/W	O/W			
	Sebelum Cycling Test O/W O/W	Sebelum Cycling Test Sesudah Cycling Test O/W O/W O/W O/W		

Formula 3	O/W	O/W

Keterangan:

Formula 0 : Sediaan Lotion Tanpa Ekstrak Daun Brokoli

Formula 1 : Sediaan Lotion dengan Ekstrak daun Brokoli2%

Formula 2 : Sediaan Lotion dengan Ekstrak daun Brokoli 4%

Formula 3 : Sediaan Lotion dengan Ekstrak daun Brokoli 6%

Uji Homogenitas

Uji homogenitas dilakukan untuk memastikan bahwa komponen-komponen sediaan *lotion* dapat tercampur secara homogen. Uji homogenitas diperoleh sampai seluruh sediaan lotion telah homogen yang ditunjukkan dengan tidak terdapat partikel-partikel kasar pada kaca. Uji homogenitas dilakukan sebelum dan sesudah uji *cycling test* selama 6 siklus. Hasil pengamatan menunjukkan bahwa seluruh formula sediaan *lotion* tetap homogen setelah dilakukan uji stabilitas (*cycling test*).

Tabel 7. Hasil Pengamatan Uji Homogenitas Sediaan Lotion Ekstrak Etanol Daun Brokoli

Formula	Hasil Pengamatan	
	Sebelum Cycling Test	Sesudah Cycling Test
Formula 0	Homogen	Homogen
Formula 1	Homogen	Homogen
Formula 2	Homogen	Homogen
Formula 3	Homogen	Homogen

Keterangan:

Formula 0 : Sediaan Lotion Tanpa Ekstrak Daun Brokoli

Formula 1 : Sediaan Lotion dengan Ekstrak daun Brokoli 2%

Formula 2 : Sediaan Lotion dengan Ekstrak daun Brokoli 4%

Formula 3: Sediaan Lotion dengan Ekstrak daun Brokoli 6%

Pengukuran pH

Pengukuran pH bertujuan untuk mengetahui derajat keasaman atau kebasaan formula sediaan *lotion* yang dibuat. Berdasarkan SNI 4399-1966 nilai pH yang lazim untuk sediaan lotion adalah 4,5-8,0. Hasil uji menunjukan bahwa seluruh formula sediaan *lotion* ekstrak etanol daun brokoli berada pada kisaran pH 6,50 sampai dengan 6,88.

Tabel 8. Hasil Pengukuran pH pada Sediaan Lotion Ekstrak Etanol Daun Brokoli

Formula	Hasil Pengujian				
	Sebelum Cycling Test	Sesudah Cycling Test			
Formula 0	6,88	6,86			
Formula 1	6,53	6,50			
Formula 2	6,62	6,60			
Formula 3	6,61	6,57			

Keterangan:

Formula 0 : Sediaan Lotion Tanpa Ekstrak Daun Brokoli

Formula 1 : Sediaan Lotion dengan Ekstrak daun Brokoli 2%

Formula 2 : Sediaan Lotion dengan Ekstrak daun Brokoli 4%

Formula 3 : Sediaan Lotion dengan Ekstrak daun Brokoli 6%

Pengujian Daya Lekat

Hasil pengujian daya lekat sediaan *lotion* pada masing-masing formula sebelum dan setelah *cycling test* menunjukkan bahwa semua formula yang dibuat memiliki daya lekat yaitu lebih dari 4 detik.

Tabel 9. Hasil Uji Daya Lekat pada Sediaan Lotion Ekstraks Etanol Daun Brokoli

Formula	Hasil Pengujian		
	Sebelum Cycling Test	Setelah Cycling Test	
Formula 0	4,56 detik	4,55 detik	

Formula 1	4,60 detik	4,58 detik
Formula 2	4,75 detik	4,72 detik
Formula 3	4,74 detik	4,67 detik

Keterangan:

Formula 0 : Sediaan Lotion Tanpa Ekstrak Daun Brokoli Formula 1 : Sediaan Lotion dengan Ekstrak daun Brokoli 2% Formula 2 : Sediaan Lotion dengan Ekstrak daun Brokoli 4% Formula 3 : Sediaan Lotion dengan Ekstrak daun Brokoli 6%

Pengukuran Daya Sebar Sediaan Lotion Ekstrak Etanol Daun brokoli

Pengukuran daya sebar pada sediaan lotion dilakukan untuk mengetahui luasnya penyebaran sediaan lotion pada saat diaplikasikan pada kulit. Berdasarkan hasil pengukuran daya sebar keempat formulasi sediaan *lotion* sebelum dan sesudah *cycling test* diketahui bahwa daya sebar seluruh formula berkisar antara 6,5 cm sampai dengan 6,97 cm.

Tabel 10. Hasil Uji Daya Sebar Sediaan Lotion Ekstrak Etanol Daun Brokoli

Formula	Hasil Pengujian			
	Sebelum Cycling Test	Sesudah Cycling Test		
Formula 0	6,57 cm	6,67cm		
Formula 1	6,8 cm	6,97 cm		
Formula 2	6,73 cm	6,83 cm		
Formula 3	6,5 cm	6,8 cm		

Keterangan:

Formula 0 : Sediaan Lotion Tanpa Ekstrak Daun Brokoli Formula 1 : Sediaan Lotion dengan Ekstrak daun Brokoli 2% Formula 2 : Sediaan Lotion dengan Ekstrak daun Brokoli 4% Formula 3 : Sediaan Lotion dengan Ekstrak daun Brokoli 6%

Pengujian Viskositas Sediaan Lotion

Pengujian viskositas bertujuan untuk mengetahui kekentalan sediaan. Berdasarkan SNI 16-4399-1996 nilai viskositas untuk sediaan *lotion* yaitu berkisar antara 2.000-50.000 cp. Nilai viskositas yang optimal akan membuat sediaan semakin mudah dioleskan dan diratakan di atas permukaan kulit. Hasil dari pengujian sebelum *cycling test* yaitu berkisara 7.486 cp sampai dengan 10.949 cp dan sesudah *cycling test* hasil viskositas berkisar 7.041 cp sampai dengan 1.0517 cp.

Tabel 11. Hasil Uji Viskositas Sediaan Lotion Ekstrak Etanol Daun Brokoli

Formula	Hasil Pengujian			
	Sebelum Cycling Test (cp)	Sesudah Cycling Test (cp)		
Formula 0	7.486	7.041		
Formula 1	7.711	7.619		
Formula 2	8.635	8.537		
Formula 3	10.949	10.517		

Keterangan:

Formula 0 : Sediaan Lotion Tanpa Ekstrak Daun Brokoli Formula 1 : Sediaan Lotion dengan Ekstrak daun Brokoli 2% Formula 2 : Sediaan Lotion dengan Ekstrak daun Brokoli 4% Formula 3 : Sediaan Lotion dengan Ekstrak daun Brokoli 6%

PEMBAHASAN

Proses ekstraksi daun brokoli pada penelitian ini dilakukan menggunakan metode maserasi dengan pelarut etanol 70%. Maserasi merupakan metode penyarian atau pemisahan senyawa aktif dari suatu bahan/simplisia dengan cara perendaman di dalam pelarut tertentu pada suhu ruang (tanpa pemanasan) selama beberapa hari. Metode ini cocok digunakan untuk menyari zat yang mudah rusak akibat pemanasan (Septyowardani & Parmadi, 2021). Etanol 70%

sebagai pelarut dalam proses maserasi mampu menarik senyawa metabolit yang lebih banyak dibandingkan dengan jenis pelarut organik lainnya karena sifatnya yang polar sehingga memiliki daya penetrasi yang lebih baik terhadap membran sel baik dari bagian hidrofilik maupun lipofilik (Andriani & Murtisiwi, 2020).

Proses difusi terjadi selama maserasi berlangsung, senyawa aktif di dalam sel yang bersifat hipotonik akan terdesak keluar sel dan pelarut etanol 70% yang bersifat hipotonik akan masuk ke dalam inti sel melewati dinding sel dan menyebabkan dinding sel pecah. Hal ini mengakibatkan senyawa metabolit dalam sitoplasma keluar dari sel dan terlarut di dalam pelarut etanol 70% (Rikantara dkk., 2022). Proses maserasi berakhir ditandai dengan warna filtrat (maserat) yang jernih. Proses penyaringan dilakukan pada tahap akhir maserasi untuk memisahkan residu (ampas) dengan filtrat (maserat). Filtrat (maserat) yang diperoleh perlu dipekatkan menggunakan *rotary evaporator* untuk memisahkan senyawa metabolit dengan pelarut. Etanol 70% memiliki titik didih yang rendah yaitu 79 °C sehingga memerlukan panas yang lebih sedikit saat proses pemekatan (Hasanah & Novian, 2020). Berdasarkan hasil pemekatan diperoleh ekstrak kental daun brokoli sebanyak 62,32 g dan nilai rendemen sebesar 24,93% (Tabel 2). Ekstrak daun brokoli memiliki tekstur kental, berwarna coklat kehitaman, beraroma khas. Secara kualitatif, ekstrak etanol daun brokoli terdeteksi mengandung senyawa metabolit sekunder golongan flavonoid, tanin, dan steroid (Tabel 3). Flavonoid dan tanin merupakan senyawa polifenolik yang berpotensi sebagai antioksidan (Shen dkk., 2022).

Pengujian aktivitas antioksidan pada penelitian ini menggunakan metode DPPH. Prinsip metode DPPH adalah senyawa antioksidan akan mendonorkan atom hidrogennya pada senyawa radikal DPPH, sehingga menyebabkan DPPH menjadi bentuk tereduksi yang bersifat nonradikal. DPPH dalam bentuk nonradikal akan kehilangan warna ungu. Pudarnya warna ini ditandai pula dengan penurunan absorbansi DPPH pada panjang gelombang maksimum yang diukur menggunakan spektrofotometer UV-Vis (Herlina dkk., 2022). Pengukuran aktivitas antioksidan menggunakan spektrofotometer UV-Vis pada panjang gelombang maksimum DPPH λ=517,50 nm. Panjang gelombang tersebut dapat digunakan sebab panjang gelombang dari absorbansi maksimum yang dapat digunakan untuk pengukuran dengan metode DPPH yaitu 515-520 nm (Qomaliyah dkk., 2023). Pada penelitian ini dilakukan pengukuran absorban ekstrak etanol daun brokoli, sediaan lotion dan kontrol positif vitamin C pada panjang gelombang λ=517,50 nm yang merupakan panjang gelombang maksimum DPPH. Absorban yang diperoleh digunakan untuk menghitung persentase inhibisi. Kemudian dilakukan regesi antara persentase inhibisi dengan konsentrasi sampel uji, sehingga bisa didapatkan nilai IC₅₀. IC₅₀ antioksidan diartikan sebagai konsentrasi sampel yang menghambat 50% DPPH, sehingga nilai 50 disubstitusikan untuk nilai y. Setelah mensubstitusikan nilai 50 pada nilai y, akan didapat nilai x sebagai nilai IC₅₀ (Herlina dkk., 2022).

Berdasarkan hasil pengujian yang telah dilakukan, nilai IC₅₀ ekstrak daun brokoli sebesar 89,64 ppm, Vitamin C sebesar 3,36 ppm, dan sediaan *lotion* F0 sebesar 4452,31 ppm, F1 sebesar 872,49 ppm, F2 sebesar 687,93 ppm, dan F3 sebesar 342,27 ppm. Berdasarkan nilai IC₅₀ diketahui bahwa ekstrak etanol daun brokoli memiliki daya antioksidan yang kuat. Hasil penelitian ini berbeda dengan penelitian sebelumnya yang menyebutkan bahwa daun brokoli memiliki aktivitas antioksidan yang sangat kuat dengan nilai IC₅₀ sebesar 25,215 ppm (Devi dkk., 2023). Perbedaan ini dapat dipengaruhi oleh beberapa faktor seperti lingkungan pertumbuhan tanaman, ketinggian, suhu, intensitas cahaya matahari, curah hujan, iklim, dan tanah (Momuat dkk., 2011).

Vitamin C sebagai kontrol positif termasuk antioksidan yang sangat kuat karena vitamin C merupakan antioksidan murni hasil isolasi, sedangkan ekstrak yang diuji pada penelitian ini merupakan bentuk campuran senyawa yang kemungkinan memiliki khasiat yang beragam. Sediaan *lotion* F1 dan F2 dapat memiliki daya antioksidan yang kurang aktif atau sangat lemah namun masih berpotensi sebagai zat antioksidan, sediaan lotion F3 memiliki daya antioksidan

yang lemah. Sedangkan sediaan lotion F0 diketahui antioksidan tidak aktif sama sekali. Aktivitas antioksidan ekstrak murni lebih tinggi dari sediaan lotion ekstrak daun brokoli. Hal ini disebabkan ekstrak tersebu hanya merupakan salah satu dari banyak komponen sedangkan dalam sediaan *lotion*, senyawa antioksidan dapat berinteraksi dengan komponen lain seperti emulgator, pengawet, atau bahan aktif lainnya. Interaksi ini dapat mengurangi efektivitas senyawa antioksidan dan untuk perbedaan nilai IC₅₀ pada setiap formula disebabkan oleh banyaknya konsentrasi ekstrak yang ditambahkan kedalam formula sediaan *lotion*. Semakin tinggi konsentrasi ekstrak, maka semakin rendah nilai absorbansinya. Hal ini dikarenakan semakin tinggi konsentrasi ekstrak yang ditambahkan ke dalam sediaan lotion, maka semakin tinggi pula kandungan antioksidannya (Fitriani dkk., 2019).

Pengujian stabilitas sediaan lotion ekstrak etanol daun brokoli menggunakan metode *cycling test* merupakan pengujian stabilitas dipercepat yang dilakukan pada sediaan *lotion* dengan menyimpan sediaan *lotion* pada kondisi yang dirancang untuk mempercepat perubahan yang biasanya terjadi dalam kondisi normal. Penyimpanan dilakukan dalam dua kondisi berbeda, yaitu pada suhu 4°C selama 24 jam dan kemudian pada suhu 40°C selama 24 jam (1 siklus). Uji ini dilakukan selama 6 siklus. Kondisi penyimpanan untuk keduanya secara realistis adalah 12 bulan pada suhu kamar (Justicia dkk., 2019). Hasil pengujian stabilitas dipercepat menunjukkan bahwa sediaan *lotion* ekstrak etanol daun brokoli (F0, F1, F2, dan F3) sebelum dan sesudah siklus ke 6 sediaan tetap memenuhi karakteristik mutu fisik sediaan *lotion* yang baik.

Hasil dari pengamatan uji stabilitas dipercepat (*cycling test*) sebelum dan sesudah *cycling test* menunjukkan bahwa semua formula tidak mengalami perubahan warna dan tidak terjadi perubahan tekstur sediaan. Pengujian tipe emulsi dilakukan untuk mengetahui tipe emulsi sediaan. Tipe emulsi sediaan yang diharapkan yaitu tipe O/W. Berdasarkan hasil uji tipe emulsi sebelum dan sesudah uji *cycling test* menunjukkan bahwa sediaan *lotion* memiliki tipe minyak dalam air (O/W) dan tidak mengalami perubahan. Hal ini disebabkan karena volume fase terdispersi (fase minyak) yang digunakan dalam *lotion* ini lebih kecil dari fase pendispersi (fase air) yang jumlahnya lebih besar dari fase minyak (Zam & Musdalifah, 2022).

Uji homogenitas dilakukan untuk melihat dan mengetahui tercampurnya komponen-komponen sediaan *lotion*. Uji homogenitas diperoleh sampai seluruh sediaan *lotion* telah homogen dengan tidak adanya partikel-partikel kasar pada kaca. Hasil pengamatan uji homogenitas sebelum dan sesudah *cycling test* menunjukkan bahwa seluruh formula sediaan memiliki homogenitas yang baik, karena tidak terdapat gumpalan atau butiran kasar pada waktu pengujian yang artinya pada semua sediaan *lotion* bahan tercampur merata. Sediaan yang homogen akan menghasilkan mutu yang baik karena menunjukkan bahan obat terdispersi secara merata, sehingga dalam setiap bagian mengandung obat yang jumlahnya sama dan memberikan efek terapi yang sama saat diaplikasikan pada kulit (Dominica & Handayani, 2019).

Pengukuran pH bertujuan untuk mengetahui sediaan *lotion* yang dibuat bersifat asam atau basa. Menurut SNI 4399-1966 pH yang diizinkan untuk sediaan *lotion* adalah 4,5-8,0. Berdasarkan hasil diatas nilai pH sebelum *cycling test* berkisar 6,53-6,88 dan setelah uji stabilitas (*cycling test*) mengalami penurunan dengan nilai pH berkisar antara 6,50-6,86, akan tetapi hasil uji pH sebelum dan setelah *cycling test* memenuhi syarat pH. Penurunan pH disebabkan oleh terurainya zat pada sediaan saat proses *cycling test*, terutama asam lemak tak jenuh dari fase minyak sediaan yang terurai. Sediaan *lotion* yang memiliki pH yang terlalu asam dapat mengiritasi kulit sedangkan apabila ph terlalu basa dapat membuat kulit menjadi kering (Arisanty dkk., 2020)

Dari hasil pengujian daya lekat sediaan *lotion* pada masing-masing formula sebelum dan setelah *cycling test* menunjukkan bahwa semua formula yang dibuat sesuai persyaratan daya lekat yaitu lebih dari 4 detik. Namun setelah *cycling test* daya lekat pada semua formula

mengalami penurunan waktu daya lekat, hal ini disebabkan oleh perubahan suhu dan penyimpanan. Daya lekat *lotion* berhubungan dengan lama tidaknya *lotion* dapat berkontak pada permukaan kulit. *Lotion* yang baik mampu menjamin waktu kontak yang efektif dengan kulit sehingga tujuan penggunaanya tercapai, namun tidak terlalu lengket saat diaplikasikan pada kulit.

Pengukuran daya sebar pada sediaan *lotion* dilakukan untuk mengetahui luasnya penyebaran sediaan *lotion* pada saat diaplikasikan pada kulit. Berdasarkan hasil pengukuran daya sebar keempat formulasi sediaan *lotion* sebelum dan sesudah *cycling test* memenuhi persyaratan daya sebar yaitu berkisar antara 6,5-6,97 cm. Standar uji daya sebar *lotion* yang baik berkisar antara 5-7 cm. Faktor yang memengaruhi diameter daya sebar suatu sediaan *lotion* adalah jumlah ekstrak yang digunakan setiap masing masing formula. Semakin tinggi konsentrasi ekstrak, daya sebar sediaan semakin meningkat, hal ini disebabkan karena semakin menurunnya viskositas sediaan *lotion* (Iskandar dkk., 2021).

Pengujian viskositas bertujuan untuk mengetahui kekentalan sediaan. Berdasarkan SNI 16-4399-1996 nilai viskositas untuk sediaan *lotion* yaitu berkisar antara 2.000-50.000 cp. Nilai viskositas yang optimal akan membuat sediaan semakin mudah dioleskan dan diratakan di atas permukaan kulit. Berdasarkan hasil pengujian yang didapatkan menunjukkan bahwa nilai viskositas dari semua formula berbeda-beda. Semakin tinggi konsentrasi ekstrak dalam sediaan maka semakin tinggi pula nilai viskositasnya karena semakin tinggi konsentrasi ekstrak pada sediaan maka semakin sedikit jumlah air yang ditambahkan pada sediaan tersebut (Armadany dkk., 2019). Pengujian viskositas sesudah *cycling test* mengalami penurunan hasil viskositas, hal ini dipengaruhi oleh beberapa faktor seperti penyimpanan, suhu, dan eksipien yang digunakan (Armadany dkk., 2019).

KESIMPULAN

Ekstrak Etanol daun brokoli terdeteksi mengandung senyawa golongan flavonoid, tanin, dan steroid. Ekstrak etanol daun brokoli dapat diformulasikan sebagai sediaan *lotion* dan memiliki tipe sediaan minyak dalam air. Ekstrak daun brokoli dengan konsentrasi 2 g (F1), dan 4 g (F2), dan 4 g (F3) pada formulasi lotion memenuhi semua kriteria karakteristik lotion dengan memiliki tipe sediaan O/W, bentuk semi padat, berwarna hijau muda, memiliki bau khas, homogen , memiliki pH berkisar 6,5-6,88, dengan viskositas sediaan 7041-10949 cp, mempunyai daya sebar 6,5-6,97 cm, dan daya lekat 4,55-4,75 detik. Ekstrak etanol daun brokoli memiliki aktivitas antioksidan kuat dengan nilai IC₅₀ sebesar 89,64 ppm, sedangkan sediaan *lotion* ekstrak etanol daun brokoli pada konsentrasi 2 % (F1), dan 4% (F2) memiliki aktivitas antioksidan yang kurang aktif atau sangat lemah dengan nilai IC₅₀ yaitu sebesar 872,49 ppm dan 687,93 ppm, dan untuk konsentrasi 6% (F3) memiliki aktivitas antioksidan yang lemah dengan nilai IC₅₀ yaitu sebesar 342,27 ppm.

UCAPAN TERIMAKASIH

Ucapan terimakasih disampaikan kepada pihak Laboratorium Kimia Farmasi, Laboratorium Teknologi Farmasi, Laboratorium Farmasetika, dan Laboratorium Penelitian, Prodi Farmasi, Fakultas Farmasi, Institut Sains dan Teknologi Nasional yang telah memfasilitasi kebutuhan alat, bahan, dan ruang untuk penelitian.

DAFTAR PUSTAKA

Ambari, Y., Saputri, A. O., & Nurrosyidah, I. H. (2021). Formulasi Dan Uji Aktivitas Antioksidan Body Lotion Ekstrak Etanol Daun Kemangi (*Ocimum cannum* Sims.) Dengan

- Metode DPPH (1,1 diphenyl-2- picrylhydrazyl). As-Syifaa Jurnal Farmasi, 13(2), 86–96.
- Andriani, D., & Murtisiwi, L. (2020). Uji aktivitas antioksidan ekstrak etanol 70% bunga telang (Clitoria ternatea L) dari daerah sleman dengan metode DPPH. *Pharmacon: Jurnal Farmasi Indonesia*, 17(1), 70-76.
- Ardianti, F., & Rahmasari, V. A. (2021). Formulasi Dan Evaluasi Uji Mutu Fisik Lotion Ekstrak Kulit Manggis (*Garcinia mangostana* L.). *Jurnal Farmasi Indonesia*, *II*(1), 19–28.
- Arisanty, Sinala, S., Sukmawaty, M., & Masna, A. (2020). Formulasi Sediaan Lotion Sari Kering Herba Pegagan (*Centella asiatica*(L.) URBAN) Dengan Variasi Konsentrasi Emulgator Span 60 Dan Tween 60. *Media Farmasi*, 16(1), 1–8.
- Armadany, F. I., Musnina, W. O. S., & Wilda, U. (2019). Formulasi dan Uji Stabilitas Lotion Antioksidan dari Ekstrak Etanol Rambut Jagung (*Zea mays* L.) sebagai Antioksidan dan Tabir Surya. *Pharmauho: Jurnal Farmasi, Sains, Dan Kesehatan, 5*(1), 16–20.
- Deepa, P., Sowndhararajan, K., & Park, S. J. (2020). Polyphenolic contents and antioxidant activity of brassicaceae sprouts cultivated in the plant factory system. *Journal of Agricultural, Life and Environmental Sciences*, 32(3), 321-331.
- Depkes RI Departemen Kesehatan Republik Indonesia. (1980). *Materia Medika Indonesia Jilid IV*. Jakarta: Departemen Kesehatan Republik Indonesia.
- Devi, M., Soekopitojo, S., Hidayati, L., & Trisnawan, R. (2023). Antioxidant capacity and phytochemical analysis of broccoli (*Brassica oleracea* L. var italica) powder with sun drying technology. *Advances in Food Science, Sustainable Agriculture and Agroindustrial Engineering*, 134–143.
- Dominica, D., & Handayani, D. (2019). Formulasi dan Evaluasi Sediaan Lotion dari Ekstrak Daun Lengkeng (*Dimocarpus Longan*) sebagai Antioksidan. *Jurnal Farmasi Dan Ilmu Kefarmasian Indonesia*,
- Fitriani, N., Herman, & Rijai, L. (2019). Antioksidan Ekstrak Daun Sumpit (*Brucea javanica* (L). Merr) dengan Metode DPPH. *Jurnal Sains Dan Kesehatan*, 2(1), 57–62.
- Hasanah, N., & Novian, D. R. (2020). Analisis Ekstrak Etanol Buah Labu Kuning (*Cucurbita Moschata* D.). *Jurnal Ilmiah Farmasi*, 9(1), 54–59.
- Herlina, Mulyani, E., & Wulandari, T. (2022). Perbandingan Aktivitas Antioksidan Pada Minuman Infused Water Dari Jeruk Nipis, Jeruk Lemon Dan Jeruk Kalamansi Dengan Metode Dpph. *Jurnal Insan Farmasi Indonesia*, 5(1), 56–65.
- Iskandar, B., Sidabutar, S. E. B., & Leny, L. (2021). Formulasi dan Evaluasi Lotion Ekstrak Alpukat (*Persea Americana*) sebagai Pelembab Kulit. *Journal of Islamic Pharmacy*, 6(1), 14–21.
- Justicia, A. K., Wildaniah, W., & Ganda, K. (2019). Pengaruh Jenis Emulgator Terhadap Kestabilan Fisik Lotion Repelan Nyamuk Ekstrak Etanol Bunga Kenanga (*Cananga odorata* L). *Medical Sains*, 5(2), 159–164.
- Mardikasari, S. A., Mallarangeng, A. N. T. A., Zubaydah, W. O. S., & Juswita, E. (2017). Formulasi dan uji stabilitas lotion dari ekstrak etanol daun jambu biji (*Psidium guajava* L.) sebagai antioksidan. *Jurnal Farmasi, Sains dan Kesehatan*, 3(2), 28-32.
- Momuat, L., F. Fatimah, F. Mehantouw, & O. Mamondol. (2011). Total Antioksidan dari Beberapa Jenis Sayuran Tinutuan yang Ditanam di Daerah Berbeda Ketinggian. *Chemistry Progress*, 4(1), 5–10.
- Paryati, S. P. Y., Juliastuti, H., & Gunawan, D. F. (2021). Efek Antibakteri Ekstrak Etanol Daun Brokoli (*Brassica oleracea* var. italica) Terhadap Pertumbuhan Propionibacterium acnes Secara In Vitro. *Medika Kartika Jurnal Kedokteran Dan Kesehatan*, 4(Volume 4 No 4), 395–408.
- Pujiastuti, A., & Kristiani, M. (2019). Formulasi dan uji stabilitas mekanik hand and body

- lotion sari buah tomat (*Licopersicon esculentum* Mill.) sebagai antioksidan. *Jurnal Farmasi Indonesia*, 16(1), 42-55.
- Purwaningsih, S., Salamah, E., & Budiarti, T. A. (2014). Formulasi Skin Lotion dengan Penambahan Karagenan dan Antioksidan Alami dari Rhizophora mucronata Lamk. *Jurnal Akuatika Indonesia*, *5*(1), 245758.
- Putri, D. M., & Lubis, S. S. (2020). Skrining Fitokimia Ekstrak Etil Asetat Daun Kalayu (*Erioglossum rubiginosum* (Roxb.) Blum). *Amina*, 2(3), 120–125.
- Qomaliyah, E. N., Indriani, N., Rohma, A., & Islamiyati, R. (2023). Skrining Fitokimia, Kadar Total Flavonoid dan Antioksidan Daun Cocor Bebek. *Current Biochemistry*, *10*(1), 1–10.
- Rachmatiah, T., & Octaviani, R. (2022). Aktivitas Antifungi Ekstrak Daun Bisbul (*Diospyros blancoi* A .DC .) terhadap Trichophyton mentagrophytes dan Malassezia furfur. *Sainstech Farma Jurnal Ilmu Kefarmasian*, 15(2), 57–64.
- Rikantara, F. S., Utami, M. R., & Kasasiah, A. (2022). Aktivitas antioksidan kombinasi ekstrak daun sirsak (*Annona muricata* L.) dan ekstrak daun pepaya (*Carica papaya* L.) dengan metode DPPH. *Lumbung Farmasi: Jurnal Ilmu Kefarmasian*, 3(2), 124-133.
- Romadhon, F. A., Wilapangga, A., & Febri Fatwami, E. (2023). Formulasi dan Uji Fisik *Hand and body* lotion Sari buah tomat (*Solanum lypersicum* L.) yang berkhasiat sebagai Antioksidan. *Indonesian Journal of Pharmaceutical Education (e-Journal)*, 3(3), 497–504.
- Romadhonni, T., Prastyawati, R., Alfatheana, E., & Sinaga, H. (2022). Formulasi Sediaan Lotion Ekstrak Daun Jambu Biji (*Psidium guajava* L). *Jurnal Biogenerasi*, 7(1), 180-188.
- Rosi, D. H., Afriani, T., & Alysa Putri, H. (2023). Uji Aktivitas Antioksidan Lotion Ekstrak Etanol Daun Pepaya (*Carica papaya* L.). *Jurnal Farmasi Sains Dan Obat Tradisional*, 2(2), 180–193.
- Septyowardani, D. T., & Parmadi, A. (2021). Formulasi Krim Tabir Surya Dan Penentuan Nilai SPF Ekstrak Etanol Daun Binahong (*Anredera cardifolia* (Tenore) Steenis). *Indonesian Journal on Medical Science*, 8(2).
- Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. *Food chemistry*, 383, 132531.
- Sodamade, A., Amusat, M. A., Adeagbo, A. I., Bolaji, K. A., Odoje, O. F., & Adebimpe, A. T. (2024). Assessment of Proximate, Mineral, Phytochemical and Antimicrobial Properties of Brassica oleraceae L. Leaf Concentrates. *Asian Journal of Research in Biochemistry*, 14(5), 21-33.
- Subaidah, W. A., Hajrin, W., & Juliantoni, Y. (2020). Formulasi dan Evaluasi Sifat Fisik Lotion Ekstrak Etanol Daun Kemuning (*Murraya paniculata* (L) Jack) dan Daun Lidah Buaya (*Aloe vera* Linn). *Sasambo Journal of Pharmacy*, *I*(1), 12–16.
- Tanjung, Y. P., & Lumanik, O. R. (2020). Formulasi Dan Evaluasi Fisik Sediaan Losion Tabir Surya Ekstrak Kulit Buah Mangga (*Mangifera Indica L.*). *Syntax Literate*; *Jurnal Ilmiah Indonesia*, 5(9), 971.
- Yahni, N., Mahdi, N., & Agustina, A. (2022). Formulasi Sediaan Lotion Antioksidan dari Ekstrak Etanol Daun Rambutan (*Nephelium Lappaceum* Linn). *Journal of Current Pharmaceutical Science*, 6(1), 574–580.
- Zam, A. N. Z., & Musdalifah. (2022). Formulasi dan Evaluasi Kestabilan Fisik Krim Ekstrak Biji Lada Hitam (*Piper nigrum* L.) Menggunakan Variasi Emulgator. *Journal Syifa Sciences and Clinical Research*, 4(2), 304–313.