

YAYASAN PERGURUAN CIKINI INSTITUT SAINS DAN TEKNOLOGI NASIONAL FAKULTAS SAINS DAN TEKNOLOGI INFORMASI

JI. Moh. Kahfi II, Bhumi Srengseng Indah, Jagakarsa, Jakarta Selatan 12640 Telp. 021-7270090 (hunting), Fax. 021-7866955, hp: 081291030024 Email: <u>fsti@istn.ac.id</u> Website: <u>www.istn.ac.id</u>

SURAT PENUGASAN TENAGA PENDIDIK Nomor: 204 / 03.1 – I / IX / 2022

SEMESTER GANJIL, TAHUN AKADEMIK 2022 / 2023

Vama	: Aryo Nur Utomo, ST.,M.Kom.	Status Pegawai	Edukatif Tetap						
1K	: 01.121225	Program Studi		: Sistem Inf	formasi				
abatan Akademik				and a second diffe					
Bidang	Perincian Kegiatan		Ruang/ Tempat	Jam/ Minggu	Kredit (sks)	Hari / Waktu			
	MENGAJAR DI KELAS (KULIAH / RESPONSI	DAN LABORATORIUM)							
	1. Cloud Computing (SI)		A-1	1 Jam/Minggu	1	Senin / 08:00-09:40			
	2. Sistem Pendukung Keputusan (SI)		D-2	1,5 Jam/Minggu	1,5	Selasa / 08:00-10:00			
	3. Sistem Temu Kembali Informasi(SI)		E-4	1 Jam/Minggu		Senin /15:30-17:00			
	4. IT Service Management (SI)		D-3	1 Jam/Minggu	1	Jum'at / 14:30-16:00			
-	5. Keamanan Sistem Informasi (SI)		E-1	1 Jam/Minggu	1	Rabu / 15:30-17:00			
1	6. Algoritma dan Pemrograman (TIF)		A-2	1 Jam/Minggu	1	Kamis / 08:00-09:40			
PENDIDIKAN	7. Analisis dan Perancangan Algoritma (TIF)		A-1	1 Jam/Minggu	1	Senin / 10.30-12.10			
Dan	8. Pemrograman Jaringan (Java/Python)		D-2	1,5 Jam/Minggu	1,5	Selasa / 14.41-15.40			
PENGAJARAN	9. Pembelajaran Mesin (TIF)		E-1	1,5 Jam/Minggu	1,5	Rabu / 13.00-14.40			
	10. Komputer Forensik (TIF)		A-2	1,5 Jam/Minggu	1,5	Jumat / 12.30-14.00			
	11. Pengelolaan Layanan TI (ITSM) (TIF)	•	A-1	1 Jam/Minggu	1	Senin / 08.00-09.40			
	12. Data Compress & Coding (PIGS)		A-2	1 Jam/Minggu		Selasa / 08.00-09.4			
	13. Manajemen Proyek Perangkat Lunak		A-3	1,5 Jam/Minggu		Kamis / 10.00-11.30			
	14. Menduduki Jabatan Struktural (Ka.Prodi	ΓIF)		20 Jam/Minggu	3				
II PENELITIAN	Penulisan Karya Ilmiah				1				
III PENGABDIAN DAN MASYARAKAT	Pelatihan dan Penyuluhan		8		×				
IV UNSUR-UNSUR PENUNJANG	Berperan Serta Aktif dalam Pertemuan IlmiahSe	minar							
		Jumlah Total			16				

Kepada yang bersangkutan akan diberikan gaji / honorarium sesuai dengan peraturan penggajian yang berlaku di Institut Sains Dan Teknologi Nasiona Penugasan ini berlaku dari tanggal 02 September 2022 sampai dengan tanggal 29 Februari 2023.

AN TEKNOLOG , MEORMAS OF Jakarta, 30 September 21 Deka (Marnaeni, S.Kom., M.Ko m

Tembusan :

- 1. Direktur Akademik ISTN
- 2. Direktur Non Akademik ISTN
- 3. Ka. Biro Sumber Daya Manusia ISTN
- 4. Kepala Program Studi Sistem Informasi

5. Arsip.

DAFTAR HADIR PESERTA KULIAH MAHASISWA

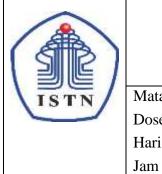
GANJIL REGULER TAHUN 2022/2023

: Sistem Informasi S1

HARI/TANGGAL : Senin

JAM KULIAH : 08.00-09.40

DOSEN


: Aryo Nur Utomo, ST.M.Kom. RUANG :

										JUMLAH	
NO	NIM	NAMA MAHASISWA		TANGGAL PERTEMUAN							
			10/								
			19/	26/	03/	10/	17/	24/	31/	07/	
			09	09	10	10	10	10	10	11	
1	20350003	Anisa Qadri Kurniasih	V	٧	V	٧	٧	V	٧		7
2	20350004	Rizky Fauzi Ramadhan	V	٧	V	٧	V	V	V		7
3	20350006	Miftah Zaidan Falih	V	V	V	V	V	V	V		7
4	20350008	Muhammad Ibnu Afan Fuadi	V	٧	V	V	٧	٧	V		7
5	20350501	Achmad Zikri	V	٧	٧	٧	٧	٧	٧		7

Jakarta , Februari 2023

Dosen Pengajar

(Aryo Nur Utomo, ST.M.Kom)

BERITA ACARA PERKULIAHAN (PRESENTASI KEHADIRAN DOSEN) SEMESETER GANJIL TAHUN AKADEMIK 2022/2023 PROGRAM STUDI SISTEM INFORMASI S1 FSTI-ISTN

Mata Kuliah	:	Cloud Computing	Semester	:	357302
Dosen	:	Aryo Nur Utomo, ST, M.Kom	SKS	:	2
Hari	:	Senin	Kelas	:	А
Jam	:	08:00-09:40	Ruang	:	B-3

No.	TANGGAL	MATERI KULIAH	JML MHS HADIR	TANDA TANGAN DOSEN
1.	19- September 2022	Pengantar Cloud Computing. IaaS, PaaS, SaaS.	5	A
2.	26- September 2022	Web Hosting tradisional	5	A
3.	03-Oktober 2022	Topologi VPS	5	A
4.	10-Oktober 2022	Web based Software Development - VCS	5	A
5.	17-Oktober 2022	Git – Github tutorial	5	A
6.	24-Oktober 2022	Migrasi aplikasi ke Cloud	5	A
7.	31-Oktober 2022	Cloud Migration – Why migrate	5	A
8.	7-November 2022	UJIAN TENGAH SEMESTER (UTS)	5	A

DOSEN PENGAJAR

(Aryo Nur Utomo, S.T., M.Kom.)

DAFTAR NILAI

SEMESTER GANJIL REGULER TAHUN 2022/2023

Program Studi : Sistem Informasi S1

Matakuliah : Cloud Computing

Kelas / Peserta : A

Perkuliahan : Kampus ISTN Bumi Srengseng Indah

Dosen : Aryo Nur Utomo, ST.M.Kom.

									Hal. 1	/1
No	NIM	ΝΑΜΑ	ABSEN	TUGAS	UTS	UAS	MODEL	PRESENTASI		HURUF
INO			0%	0%	50%	50%	0%	0%		
1	20350003	Anisa Qadri Kurniasih	100	0	70	74	0	0	72	B+
2	20350004	Rizky Fauzi Ramadhan	100	0	70	74	0	0	72	B+
3	20350006	Miftah Zaidan Falih	100	0	68	69	0	0	68.5	В
4	20350008	Muhammad Ibnu Afan Fuadi	100	0	79	79	0	0	79	A-
5	20350501	Achmad Zikri	100	0	79	78	0	0	78.5	A-

	Rekapitulasi Nilai									
А	0	B+	2	C+	0	D+	0			
A-	2	В	1	С	0	D	0			
		B-	0	C-	0	Е	0			

Jakarta,18 February 2023

Dosen Pengajar

Aryo Nur Utomo, ST.M.Kom.

Cloud Computing: Concepts, Technologies and Business Implications

Outline of the talk

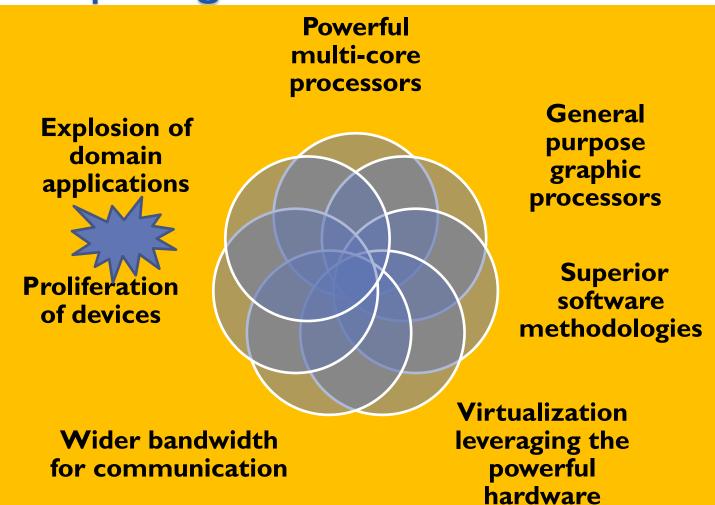
Introduction to cloud context

- Technology context: multi-core, virtualization, 64-bit processors, parallel computing models, big-data storages...
- Cloud models: IaaS (Amazon AWS), PaaS (Microsoft Azure), SaaS (Google App Engine)

Demonstration of cloud capabilities

- Cloud models
- Data and Computing models: MapReduce
- Graph processing using amazon elastic mapreduce
- A case-study of real business application of the cloud
- Questions and Answers

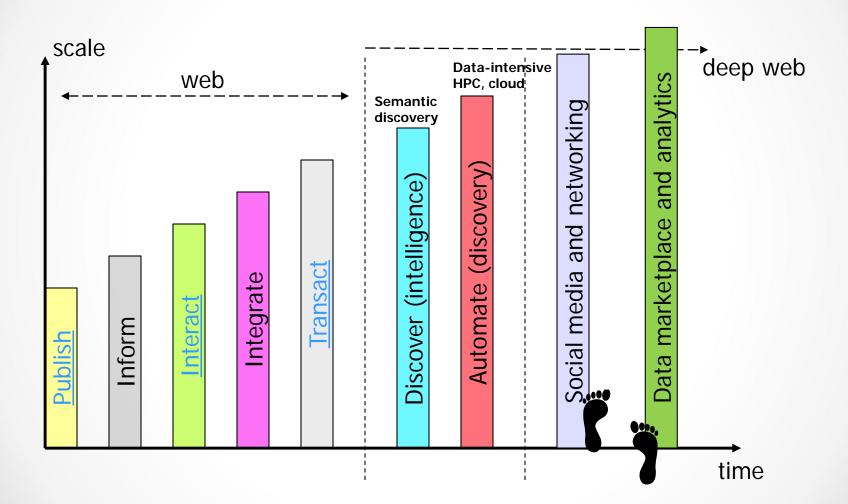
Speakers' Background in cloud computing


• Bina:

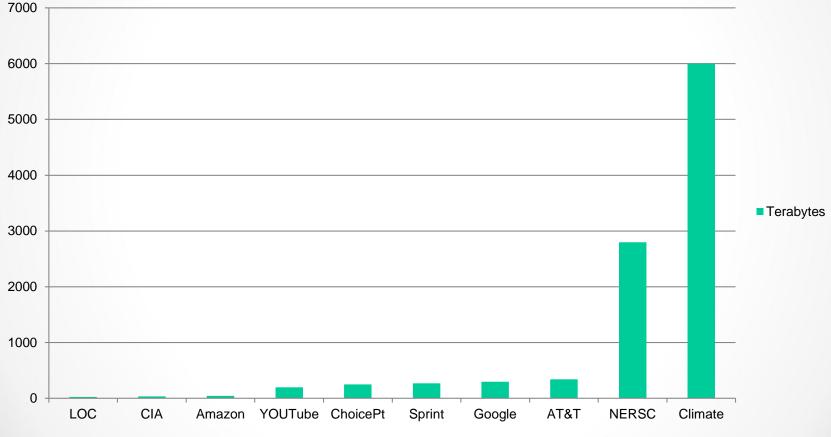
- Has two current NSF (National Science Foundation of USA) awards related to cloud computing:
- 2009-2012: Data-Intensive computing education: CCLI Phase 2: \$250K
- 2010-2012: Cloud-enabled <u>Evolutionary Genetics Testbed</u>: OCI-CI-TEAM: \$250K
- o Faculty at the CSE department at University at Buffalo.

• Kumar:

- o Principal Consultant at CTG
- Currently heading a large semantic technology business initiative that leverages cloud computing
- Adjunct Professor at School of Management, University at Buffalo.


Introduction: A Golden Era in Computing

Cloud Concepts, Enablingtechnologies, and Models: The Cloud Context


 \bullet \bullet \bullet

Evolution of Internet Computing

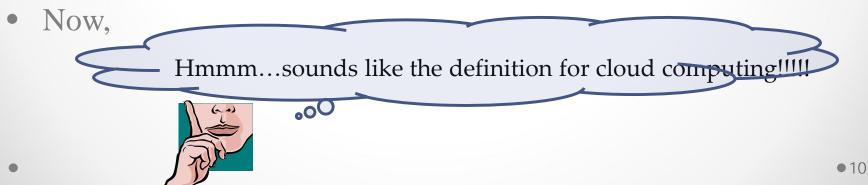
Top Ten Largest Databases

Top ten largest databases (2007)

Ref: http://www.focus.com/fyi/operations/10-largest-databases-in-the-world/

Challenges

- Alignment with the needs of the business / user / noncomputer specialists / community and society
- Need to address the scalability issue: large scale data, high performance computing, automation, response time, rapid prototyping, and rapid time to production
- Need to effectively address (i) ever shortening cycle of obsolescence, (ii) heterogeneity and (iii) rapid changes in requirements
- Transform data from diverse sources into intelligence and deliver intelligence to right people/user/systems
- What about providing all this in a cost-effective manner?


Enter the cloud

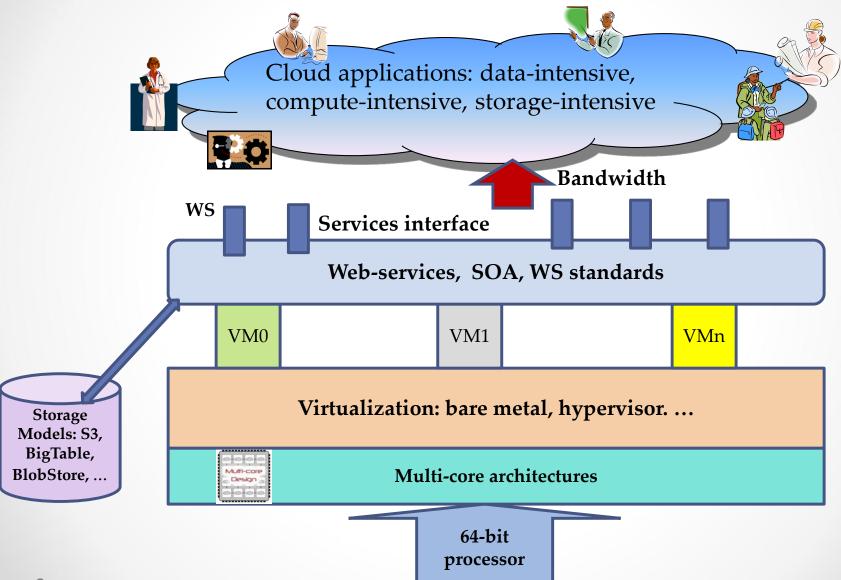
- **Cloud computing** is Internet-based computing, whereby shared resources, software and information are provided to computers and other devices on-demand, like the electricity grid.
- The cloud computing is a culmination of numerous attempts at large scale computing with seamless access to virtually limitless resources.
 - o on-demand computing, utility computing, ubiquitous computing, autonomic computing, platform computing, edge computing, elastic computing, grid computing, ...

"Grid Technology: A slide from my presentation

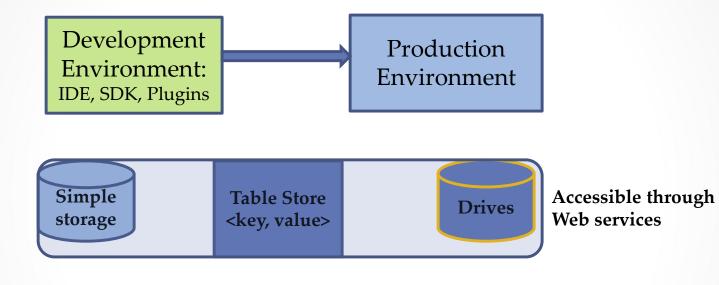
to Industry (2005)

- Emerging enabling technology.
- Natural evolution of distributed systems and the Internet.
- Middleware supporting network of systems to facilitate sharing, standardization and openness.
- Infrastructure and application model dealing with sharing of compute cycles, data, storage and other resources.
- Publicized by prominent industries as on-demand computing, utility computing, etc.
- Move towards delivering "computing" to masses similar to other utilities (electricity and voice communication)."

It is a changed world now...


- Explosive growth in applications: biomedical informatics, space exploration, business analytics, web 2.0 social networking: YouTube, Facebook
- Extreme scale content generation: e-science and e-business data deluge
- Extraordinary rate of digital content consumption: digital gluttony: Apple iPhone, iPad, Amazon Kindle
- Exponential growth in compute capabilities: multi-core, storage, bandwidth, virtual machines (virtualization)
- Very short cycle of obsolescence in technologies: Windows Vista→ Windows 7; Java versions; C→C#; Phython
- Newer architectures: web services, persistence models, distributed file systems/repositories (Google, Hadoop), multi-core, wireless and mobile
- Diverse knowledge and skill levels of the workforce
- You simply cannot manage this complex situation with your traditional IT infrastructure:

Answer: The Cloud Computing?


• Typical requirements and models:

- o platform (PaaS),
- o software (SaaS),
- o infrastructure (laaS),
- Services-based application programming interface (API)
- A cloud computing environment can provide one or more of these requirements for a cost
- Pay as you go model of business
- When using a public cloud the model is similar to renting a property than owning one.
- An organization could also maintain a private cloud and/or use both.

Enabling Technologies

Common Features of Cloud Providers

Management Console and Monitoring tools & multi-level security

- Enterprise-level on-demand capacity builder
- Fabric of cycles and storage available on-request for a cost
- You have to use Azure API to work with the infrastructure offered by Microsoft
- Significant features: web role, worker role, blob storage, table and drive-storage

- Amazon EC2 is one large complex web service.
- EC2 provided an API for instantiating computing instances with any of the operating systems supported.
- It can facilitate computations through Amazon Machine Images (AMIs) for various other models.
- Signature features: S3, Cloud Management Console, MapReduce Cloud, Amazon Machine Image (AMI)
- Excellent distribution, load balancing, cloud monitoring tools

Google App Engine

- This is more a web interface for a development environment that offers a one stop facility for design, development and deployment Java and Python-based applications in Java, Go and Python.
- Google offers the same reliability, availability and scalability at par with Google's own applications
- Interface is software programming based
- Comprehensive programming platform irrespective of the size (small or large)
- Signature features: templates and appspot, excellent monitoring and management console

Demos

- Amazon AWS: EC2 & S3 (among the many infrastructure services)
 - o Linux machine
 - o Windows machine
 - o A three-tier enterprise application
- Google app Engine
 - o Eclipse plug-in for GAE
 - o Development and deployment of an application
- Windows Azure
 - o Storage: blob store/container
 - o MS Visual Studio Azure development and production environment

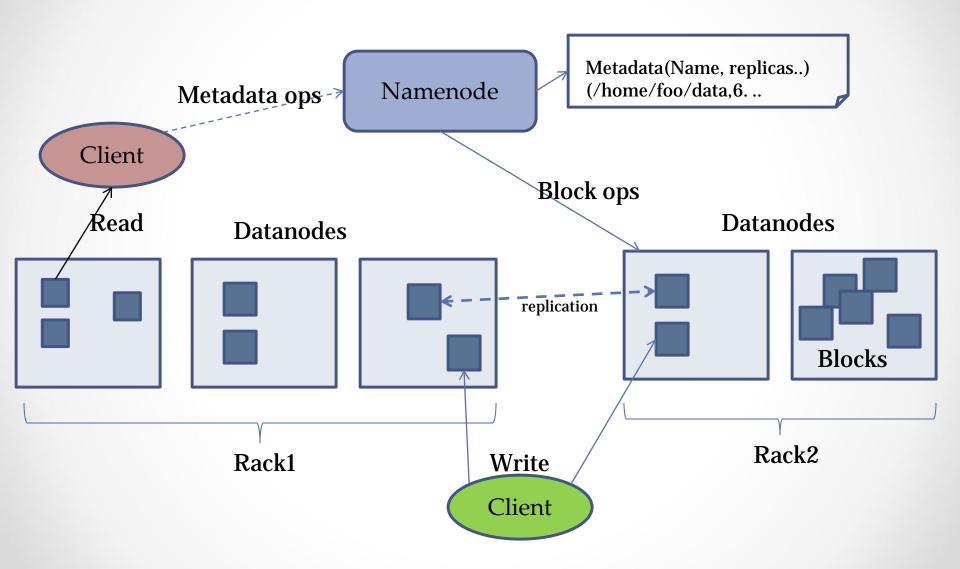
Cloud Programming Models

The Context: Big-data

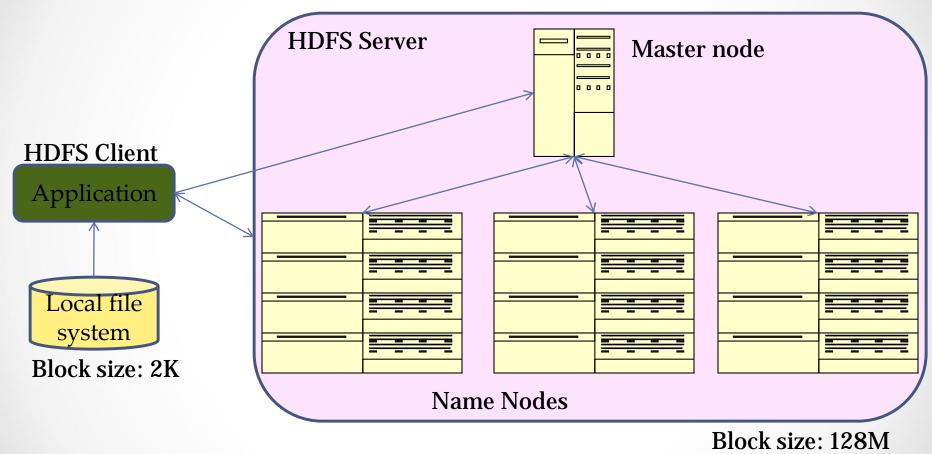
- Data mining huge amounts of data collected in a wide range of domains from astronomy to healthcare has become essential for planning and performance.
- We are in a knowledge economy.
 - o Data is an important asset to any organization
 - Discovery of knowledge; Enabling discovery; annotation of data
 - o Complex computational models
 - No single environment is good enough: need elastic, ondemand capacities
- We are looking at newer
 - o Programming models, and
 - o Supporting algorithms and data structures.

Google File System

- Internet introduced a new challenge in the form web logs, web crawler's data: large scale "peta scale"
- But observe that this type of data has an uniquely different characteristic than your transactional or the "customer order" data : "write once read many (WORM)";
 - Privacy protected healthcare and patient information;
 - Historical financial data;
 - Other historical data
- Google exploited this characteristics in its Google file system (GFS)


What is Hadoop?

- At Google MapReduce operation are run on a special file system called Google File System (GFS) that is highly optimized for this purpose.
- GFS is not open source.
- Doug Cutting and others at Yahoo! reverse engineered the GFS and called it Hadoop Distributed File System (HDFS).
- The software framework that supports HDFS, MapReduce and other related entities is called the project Hadoop or simply Hadoop.
- This is open source and distributed by Apache.

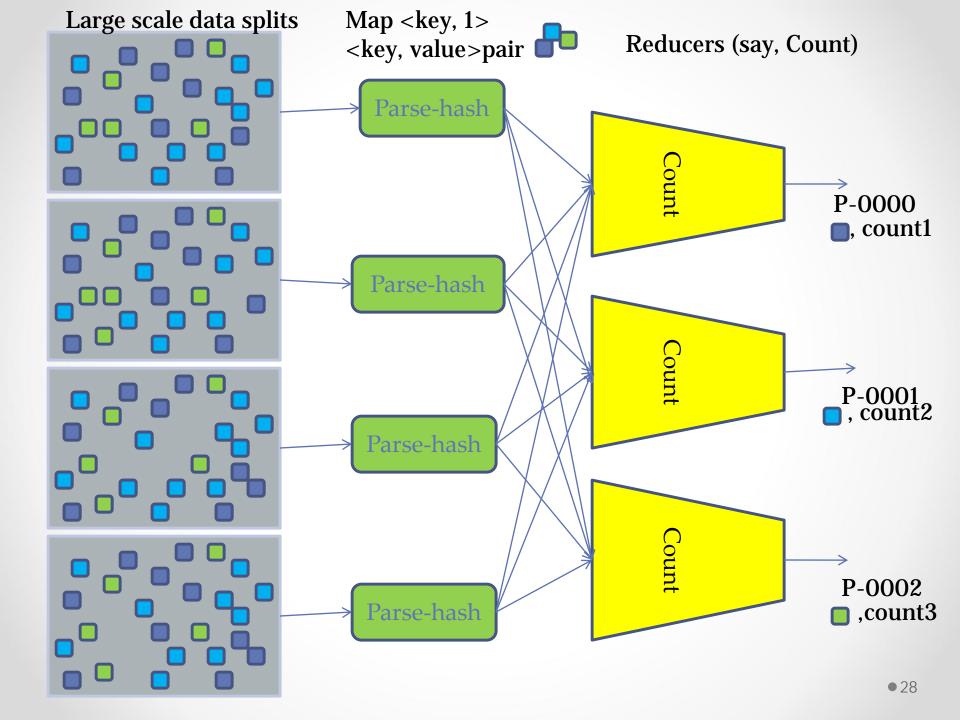

Fault tolerance

- Failure is the norm rather than exception
- A HDFS instance may consist of thousands of server machines, each storing part of the file system's data.
- Since we have huge number of components and that each component has non-trivial probability of failure means that there is always some component that is non-functional.
- Detection of faults and quick, automatic recovery from them is a core architectural goal of HDFS.

HDFS Architecture

Hadoop Distributed File System

Replicated

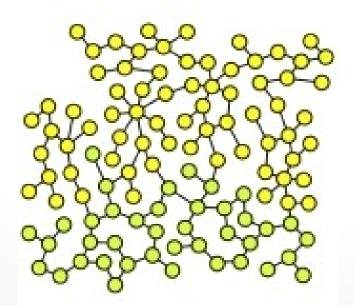

What is MapReduce?

- MapReduce is a programming model Google has used successfully is processing its "big-data" sets (~ 20000 peta bytes per day)
 - O A map function extracts some intelligence from raw data.
 - O A reduce function aggregates according to some guides the data output by the map.
 - O Users specify the computation in terms of a *map* and a *reduce* function,
 - O Underlying runtime system automatically parallelizes the computation across large-scale clusters of machines, and
 - O Underlying system also handles machine failures, efficient communications, and performance issues.

-- Reference: Dean, J. and Ghemawat, S. 2008. <u>MapReduce: simplified data</u> processing on large clusters. *Communication of ACM* 51, 1 (Jan. 2008), 107-113.

Classes of problems "mapreducable"

- Benchmark for comparing: Jim Gray's challenge on dataintensive computing. Ex: "Sort"
- Google uses it for wordcount, adwords, pagerank, indexing data.
- Simple algorithms such as grep, text-indexing, reverse indexing
- Bayesian classification: data mining domain
- Facebook uses it for various operations: demographics
- Financial services use it for analytics
- Astronomy: Gaussian analysis for locating extra-terrestrial objects.
- Expected to play a critical role in semantic web and in web 3.0



MapReduce Engine

- MapReduce requires a distributed file system and an engine that can distribute, coordinate, monitor and gather the results.
- Hadoop provides that engine through (the file system we discussed earlier) and the JobTracker + TaskTracker system.
- JobTracker is simply a scheduler.
- TaskTracker is assigned a Map or Reduce (or other operations); Map or Reduce run on node and so is the TaskTracker; each task is run on its own JVM on a node.

Demos

- Word count application: a simple foundation for text-mining; with a small text corpus of inaugural speeches by US presidents
- Graph analytics is the core of analytics involving linked structures (about 110 nodes): shortest path

• 30

A Case-study in Business: Cloud Strategies

 \bullet \bullet \bullet

Predictive Quality Project Overview Problem / Motivation:

- Identify special causes that relate to bad outcomes for the qualityrelated parameters of the products and visually inspected defects
- Complex upstream process conditions and dependencies making the problem difficult to solve using traditional statistical / analytical methods
- Determine the optimal process settings that can increase the yield and reduce defects through predictive quality assurance
- Potential savings huge as the cost of rework and rejects are very high Solution:
- Use ontology to model the complex manufacturing processes and utilize semantic technologies to provide key insights into how outcomes and causes are related
- Develop a rich internet application that allows the user to evaluate process outcomes and conditions at a high level and drill down to specific areas of interest to address performance issues

Why Cloud Computing for this Project

- Well-suited for incubation of new technologies
 - o Semantic technologies still evolving
 - o Use of Prototyping and Extreme Programming
 - o Server and Storage requirements not completely known
- Technologies used (TopBraid, Tomcat) not part of emerging or core technologies supported by corporate IT
- Scalability on demand
- Development and implementation on a private cloud

Public Cloud vs. Private Cloud

Rationale for Private Cloud:

- Security and privacy of business data was a big concern
- Potential for vendor lock-in
- SLA's required for real-time performance and reliability
- Cost savings of the shared model achieved because of the multiple projects involving semantic technologies that the company is actively developing

Cloud Computing for the Enterprise What should IT Do

- Revise cost model to utility-based computing: CPU/hour, GB/day etc.
- Include hidden costs for management, training
- Different cloud models for different applications evaluate
- Use for prototyping applications and learn
- Link it to current strategic plans for Services-Oriented Architecture, Disaster Recovery, etc.

References & useful links

- Amazon AWS: <u>http://aws.amazon.com/free/</u>
- AWS Cost Calculator: <u>http://calculator.s3.amazonaws.com/calc5.html</u>
- Windows Azure: <u>http://www.azurepilot.com/</u>
- Google App Engine (GAE): <u>http://code.google.com/appengine/docs/whatisg</u> <u>oogleappengine.html</u>
- Graph Analytics: <u>http://www.umiacs.umd.edu/~jimmylin/Cloud9/do</u> <u>cs/content/Lin_Schatz_MLG2010.pdf</u>
- For miscellaneous information: <u>http://www.cse.buffalo.edu/~bina</u>

Summary

- We illustrated cloud concepts and demonstrated the cloud capabilities through simple applications
- We discussed the features of the Hadoop File System, and mapreduce to handle big-data sets.
- We also explored some real business issues in adoption of cloud.
- Cloud is indeed an impactful technology that is sure to transform computing in business.

• 37