MATERY OF SOIL MECHANIS -2

(Diktat Mekanika Tanah-2)

MODUL-1:

Shear Strength

Bearing Capacity

Consolidation and Settlement

Idrus Ir. M.Sc
Staff Pengajar Jurusan Teknik Sipil FTSP - ISTN

September 2011

I. KUAT GESER TANAH / SHEAR STRENGTH OF SOIL

The shear strength of a soil mass is the internal resistance per unit area that the soil mass can offer to resist failure and sliding along any plane inside it. Engineers must understand the nature of shearing resistance in order to analyze soil stability problems such as bearing capacity, slope stability, and lateral pressure on earth-retaining structures.

Mohr-Coulomb Failure Criteria

Mohr (1900) presented a theory for rupture in materials. This theory contended that a material fails because of a critical combination of normal stress and shear stress, and not from either maximum normal or shear stress alone. Thus, the functional relationship between normal stress and shear stress on a failure plane can be expressed in the form

$$
\begin{equation*}
\tau_{f}=f(\sigma) \tag{8.1}
\end{equation*}
$$

where
$\tau_{f}=$ shear stress on the failure plane
$\sigma=$ normal stress on the failure plane
The failure envelope defined by Eq. (8.1) is a curved line. For most soil mechanics problems, it is sufficient to approximate the shear stress on the failure plane as a linear function of the normal stress (Coulomb, 1776). This relation can be written as

$$
\begin{equation*}
\tau_{f}=c+\sigma \tan \phi \tag{8.2}
\end{equation*}
$$

where
$c=$ cohesion
$\phi=$ angle of internal friction
The preceding equation is called the Mohr-Coulomb failure criteria.

(a)

(b)

Uji Tekan Bebas (UCT)

Direct Shear Test

Pengujian Kuat Geser Tanah dng Direct Shear Test

noure 85 Strain-inntrolled dibert Nikat test typuipment (crurtesy if

1.1.1.1.1.|.

1111111111

$\sigma=$ normal stress $=\quad$ normal force are of cross-section of the sample
$\tau=$ shear strength $=\quad$ resisting shear force are of cross-section of the sample

Type Triaxial Test di Laboratorium - UU Test

Uncosolidated Undrained
CU Test
Consolidated Undrained

- CD Test

Consolidated Drained

Tegangan-tegangan untuk pembuatan grafik Mohr Coulómb. Triaxial CU Test

```
CU TEST
```

 \(\sigma 11^{\prime}=(\Delta \sigma 11+\sigma 31)-u 1\)
 \(\sigma 31^{\prime}=\sigma 31-u 1\)
 \(u=\) Diukur
 \(\sigma 12^{\prime}=(\Delta \sigma 12+\sigma 32)-\mathrm{u} 2\)
 \(\sigma 32^{\prime}=\sigma 32-u 2\)
 \(\sigma 13^{\prime}=(\Delta \sigma 13+\sigma 33)-\mathrm{u} 3\)
 \(\sigma 33^{\prime}=\sigma 33-\mathrm{u} 3\)
 Tegangan-tegangan untuk pembuatan grafik Mohr Coulomb. Triaxial CD Test

```
CD TEST
\sigma11' = (\Delta\sigma11 + \sigma31) - u1
\sigma31' = \sigma31 - u1
\sigma12' = (\Delta\sigma12 +\sigma32)-u2 (Karena drained)
\sigma32' = \sigma32 - u2
\sigma13' = (\Delta\sigma13 + \sigma33) - u3
\sigma33' = \sigma33 - u3
```


UJI KUAT GESER DI LAPANGAN

- UJI GESER VANE (BALING-BALING)

Uji ini khusus dilakukan pada kondisi lapisan tanah lempung lunak, dimana pertimbangannya adalah bahwa bila dilakukan pengambilan sample dengan tabung, maka akan terjadi disturbance / ketergangguan sample uji, sehingga tidak akurat lagi bila dikatakan
undisturbed soil

KORELASI SHEAR
 STRENGHT PARAMETER DENGAN DATA UJI LAPANGAN (qc dan N SPT)

SPT (Standard Penetration Test)

Cara uji SPT

Jenis Hammer

N -SPT = Jumlah pukulan untuk memasukkan split spoon sedalam 30 cm $C(t / \mathrm{m} 2)=0.6 \times \mathrm{N}$

Relationship between Cohesion and N -Value (Cohesive soil)

Apakah Test Lapangan mencerminkan

- Triaxial CD?
- Triaxial CU?
- Triaxial UU?

Mana yg paling sesuai?

ANALISA DAYA DUKUNG MENURUT TERZAGHI

Gambar 11-5 Analisis daya dukung menurut Terzaghi.

Factor Daya Dukung Untuk Geser Umum

Terzaghi

Using the equilibrium analysis, Terzaghi expressed the ultimate bearing capacity in the form

$$
\text { q. }=c N_{c}+q N_{t}+\frac{1}{2} B N_{z} \quad \text { (strip foundation) }
$$

(3.3)
where
$c=$ cohesion of soil
$\gamma=$ unit weight of soil
$q=\gamma D_{t}$
$N_{c}, N_{0}, N_{y}=$ bearing capacity factors that are nondimensional and are only functions of the soil friction angle, ϕ
The bearing capacity factors, N_{c}, N_{6}, and N_{y} are defined by

$N_{4}=\frac{e^{2 \pi / 4} \text { etzone }}{2 \cos ^{2}\left(45+\frac{\phi}{2}\right)}$

$$
\begin{equation*}
N_{\gamma}=\frac{1}{2}\left(\frac{K_{r}}{\cos ^{2} \phi}-1\right) \tan \phi \tag{3.6}
\end{equation*}
$$

where $K_{m}=$ passive pressure coefficient

$$
\begin{equation*}
q_{x}=c N_{c}+q N_{q}+\frac{1}{2} \gamma B N_{y} \quad \text { (strip foundation) } \tag{3.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& c=\text { cohesion of soil } \\
& \gamma=\text { unit weight of soil } \\
& q=\gamma D_{f}
\end{aligned}
$$

$N_{c}, N_{9}, N_{y}=$ bearing capacity factors that are nondimensional and are only functions of the soil friction angle, ϕ

The bearing capacity factors, N_{c}, N_{e}, and N_{r} are defined by

$$
\begin{equation*}
N_{c}=\cot \phi\left[\frac{e^{2(\beta z / 4-\phi / 2) \text { und }}}{2 \cos ^{2}\left(\frac{\pi}{4}+\frac{\phi}{2}\right)}-1\right]=\cot \phi\left(N_{\mathrm{e}}-1\right) \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
q_{\mathrm{k}}=1.3 c N_{\mathrm{c}}+q N_{\mathrm{c}}+0.4 \gamma B N_{\gamma} \quad \text { (square foundation) } \tag{3.7}
\end{equation*}
$$

1

$$
\begin{equation*}
q_{u}=1.3 c N_{c}+q N_{e}+0.3 \gamma B N_{\gamma} \quad \text { (circular foundation) } \tag{3.8}
\end{equation*}
$$

Example

3.2

Repeat Example Problem 3.1, assuming local shear failure occurs in the soil supporting the foundation.

Solution

From Eq. (3.10)

$$
q_{u}=0.867 c N_{c}^{\prime}+q_{4} N_{u}^{\prime}+0.4 \gamma B N_{\gamma}^{\prime}
$$

From Figure 3.5, for $\phi=20^{\circ}$

$$
\begin{aligned}
& N_{c}^{\prime}=12 \\
& N_{y}^{\prime}=4 \\
& N_{y}^{\prime}=1.7
\end{aligned}
$$

So

$$
\begin{aligned}
q_{u} & =(0.867)(15.2)(12)+(1 \times 17.8)(4)+(0.4)(17.8)(1.5)(1.7) \\
& =158.1+71.2+18.2=247.5 \mathrm{kN} / \mathrm{m}^{2} \\
q_{\mathrm{ull}} & =\frac{247.5}{4}-61.9 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

Allowable gross load $=Q=\left(q_{\text {all }}\right)\left(B^{2}\right)=(61.9)\left(1.5^{2}\right)=139 \mathrm{kN}$

	Case I If the water table is located so that $0 \leq D_{1} \leq D_{f}$, the factor q in the bearing capacity equations takes the form $\begin{equation*} q=\stackrel{\rightharpoonup}{\text { effective surcharge }}=D_{1} \gamma+D_{2}\left(\gamma_{u n}-\gamma_{*}\right) \tag{3.12} \end{equation*}$ where $\gamma_{\mathrm{x}}=$ saturated unit weight of soil $\gamma_{\nu}=$ unit weight of water Also, the value of γ in the last term of the equations has to be replaced by $\gamma^{\prime}=$ $\gamma_{s e}-\gamma_{*}$.
γ $\gamma_{m}=\text { saturated }_{\text {unit weight }}$	Case II For a water table located so that $0 \leq d \leq B$, $\begin{equation*} q=\gamma D_{I} \tag{3.13} \end{equation*}$ The factor γ in the last term of the bearing capacity equations must be replaced by the factor $\begin{equation*} \bar{\gamma}=\gamma^{\prime}+\frac{d}{B}\left(\gamma-\gamma^{\prime}\right) \tag{3.14} \end{equation*}$
	Case III When the water table is located so that $d \geq B$, the water will have no effect on the ultimate bearing capacity.

Bearing Capacity Factors

Based on laboratory and field studies of bearing capacity, the basic nature of the failure surface in soil suggested by Terzaghi now appears to be correct (Vesic, 1973). However, the angle α as shown in Figure 3.5 is closer to $45+\phi / 2$ than to ϕ. If this change is accepted, the values of N_{c}, N_{e}, and N_{γ} for a given soil friction angle will also change from those given in Table 3.1. With $\alpha=45+\phi / 2$, the relations for N_{c} and N_{q} can be derived as

$$
\begin{equation*}
N_{\mathrm{e}}=\tan ^{2}\left(45+\frac{\phi}{2}\right) e^{\tan \phi} \tag{3.26}
\end{equation*}
$$

$$
\begin{equation*}
N_{\epsilon}=\left(N_{q}-1\right) \cot \phi \tag{3.27}
\end{equation*}
$$

The equation for N_{c} given by Eq. (3.27) was originally derived by Prandt (1921), and the relation for N_{q} [Eq. (3.2G)] was presented by Reissner (1924). Caquot and Kerisel (1953) and Vesic (1973) gave the relation for N_{γ} as

$$
\begin{equation*}
N_{\gamma}=2\left(N_{⿱}+1\right) \tan \phi \tag{3.28}
\end{equation*}
$$

Harga-harga Faktor bentuk, Faktor Kedalaman dan Faktor Kemiringan Beban

Faktor bentuk untuk pondeol bentuk pereogl ($\theta=$ lebar pondasif 4 - panjarg ponctasi)
$\begin{aligned} & x_{-}-1+(\underline{q})\left(\tilde{N}_{z}\right) \\ & x_{2}=1+\left(\frac{\theta}{2}\right)(\text { vann }) \\ & x_{\mu}-1-04\left(\frac{\beta}{2}\right) \end{aligned}$
Faktor bontuk untuk poritani bortuk ungkaran dan butur canokar
Faktor kodataman $\frac{0}{80} \times 1$.
Fahtor kodataman untuk -0
x-- $-1+0.4\left(\frac{0}{8}\right.$) ${ }^{\text {cosen }}$
Faktor kodataman untuk $\frac{0}{\mathrm{f}}>1$.
Faktor kedataman untuk ϕ - 0
Faktor Kemirirygan

Thus

$$
\begin{equation*}
q_{\mathrm{atl}}=\frac{q_{u}}{3}=73.73+\frac{14.89}{B}+4.43 B \tag{b}
\end{equation*}
$$

Given $Q=$ total allowable load $=q_{a l l} \times B^{2}$ or

$$
\begin{equation*}
q_{\mathrm{atl}}=\frac{150}{B^{2}} \tag{c}
\end{equation*}
$$

Equating the right-hand sides of Eqs. (b) and (c)

$$
\frac{150}{B^{2}}=73.73+\frac{14.89}{B}+4.43 B
$$

By trial and error, $B \approx 1.3 \mathrm{~m}$

Example

3.1

A square foundation is $1.5 \mathrm{~m} \times 1.5 \mathrm{~m}$ in plan. The soil supporting the foundation has a friction angle of $\phi=20^{\circ}$ and $c=15.2 \mathrm{kN} / \mathrm{m}^{2}$. The unit weight of soil, γ, is $17.8 \mathrm{kN} / \mathrm{m}^{3}$. Determinc the allowable gross load on the foundation with a factor of safety $(F S)$ of 4 . Assume the depth of the foundation $\left(D_{f}\right)$ to be one meter, and general shear failure oceurs in soil.

Solution

From Eq. (3.7)

$$
q_{m}=1.3 c_{c} \mathrm{~N}_{\mathrm{y}}+q \mathrm{~N}_{q}+0.4 \gamma B N_{\gamma}
$$

From Figure 3.4, for $\phi=20^{\circ}$
$N_{c}=17.7$

$N_{n}-7.4$
$\mathrm{N}_{\mathrm{r}}=5$
Thus

$$
\begin{aligned}
\eta_{n} & =(1.3)(15.2)(17.7)+(1 \times 17.8)(7.4)+(0.4)(17.8)(1.5)(5) \\
& =349.75+131.72+53.4=534.87 \approx 535 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

So, allowable load per unit area of the foundation $=$

$$
q_{A 1}=\frac{q_{n}}{F S}=\frac{535}{4}=133.75 \mathrm{kN} / \mathrm{m}^{2}
$$

Thus, the total allowable gross load

$$
Q=(133.75) B^{2}=(133.75)(1.5 \times 1.5)=300.9 \approx 300 \mathrm{kN}
$$

The factor of safety as defined by Eq. (3,40) may be referred to as the net allouable bearing capacity. This should be kept at least about 3 in all cases.

Another type of factor of safety for the bearing capacity of shallow foundations is often used. This is the factor of safety with respect to shear failure $\left(F \mathrm{~S}_{\text {stast }}\right)$. In most cases, a value of $F \mathrm{~S}_{\text {theis }}=1.4-1.6$ is desirable along with a minimum factor of safety of 3-4 against gross or net ultimate bearing capacity. In order to calculate the net allowable load on the basis of a given $F S_{\text {swar }}$, the following procedure should be adopted:

1. Let c and ϕ be the cohesion and the angle of friction of soil, and let $F S_{\text {show }}$ be the required factor of safety with respect to shear failure. So, the developed eohesion and the angle of friction can be given as

2. The gross allowable bearing capacity can now be calculated according to Eqs. (3.3), (3.7), (3.8) or the general bearing capacity equation [Eq. (3.16)] using c_{t} and ϕ_{6} as the shear strength parameters of the soil. For example, the gross allowable bearing capacity of a continuous foundation according to Terzaghi's equation can be written as

$$
\begin{equation*}
q_{a}=c_{i k} \mathrm{~N}_{8}+q \mathrm{~N}_{q}+4 \gamma B \mathrm{~N}_{0} \tag{3.43}
\end{equation*}
$$

where N_{c}, N_{q}. and $N_{\gamma}=$ bearing capacity factors for friction angle, ϕ_{d}
3. The net allowable bearing capacity is thus

3.7 Eccentically Loaded foundations
pressure distribution on the soil will be as shown in Figure 3.8a. The value of $q_{\text {.... }}$ can be given by the expression

$$
\begin{equation*}
q_{\text {taak }}-\frac{4 Q}{3 L(B-2 c)} \tag{3.49}
\end{equation*}
$$

2. Determine the effective dimensions of the foundation as
$B^{\prime}=$ effective width $=B-2 R$
$L^{\prime}:=$ effective length $=I_{\text {. }}$
Note that, if the eccentricity is in the direction of the length of the foundation, the value of I ' would be equal to $L-2 p$. The value of B ' would be equal to B. The smaller of the two dimensions (that is, L^{\prime} and B^{\prime}) is the effective width of the foundation.

$$
\begin{align*}
& \text { 3. Use: F.4. (3 16) for the ultimate bearing capacity as } \tag{3.50}
\end{align*}
$$

For the evaluation of $F_{c,}, F_{u}, F_{y w}, F_{i}, F_{u i}$, and $F_{y i}$, Equations (3.20) to (3.22) and Eqs. (3.29) to (3.33) have to be used with effective length and effective width dimensions in place of L and B, respectively.

For determination of $F_{c d}, F_{y d}$, and $F_{p d}$, use Equations (3.23) to (3.2S) (do not. replace B with B^{\prime})
4. The total ultimate load that the foundation can sustain is

$$
\begin{equation*}
Q_{\text {Int }}=q_{n}^{\prime(B)}(L) \tag{3.51}
\end{equation*}
$$

5. The factor of safety against bearing capacity failure is given as $F S=\frac{Q_{\text {ulr }}}{Q}$

As we can see, eccentricity tends to decrease the load-bearing capacity of a foundation. In such cases, it is probably advantageous to place the foundation columns off center, as shown in Figure 3.9. This, in effect, produces a centrally loaded foundation with uniformly distributed pressure.

Figure 3.9 Foundation of columns with off-center loading

3.12

A foundation $1 \mathrm{~m} \times 2 \mathrm{~m}$ in plan is shown in Figure 3.33. Estimate the total settlement of the foundation.

Elastic Settlement
The clay layer is located at a depth of 2 m -that is, $2 B$ below the foundation. From Figure 3.15 on p. 128 , it can be seen that the soil located at a depth $z>2 B$ has very little influence on the elastic settlement. Hence, if Eq. (3.63) is used for the elastic settlement calculation, it is reasonable to use the Young's modulus and Poisson's ratio values of the sand layer. Thus

$$
\mathrm{S}_{2}=\frac{B q_{n}}{E_{t}}\left(1-\mu_{*}^{2}\right) \alpha_{r} \longleftarrow \text { rigid foundation }
$$

Given: $q_{.}=1.50 \mathrm{kN} / \mathrm{m}^{2}, E,=10,000 \mathrm{kN} / \mathrm{m}^{2}, \mu,=0.3$, and $\alpha_{r} \approx 1.2$ (Figure 3.13b). So

$$
S_{r}-\frac{(1)(150)}{10,000}\left(1-0.3^{2}\right)(1.2)=0.0163 \mathrm{~m}=16.38 \mathrm{~mm}
$$

$$
S_{e}=A_{1} A_{2} \frac{q_{v} B}{E_{s}}
$$

Agure 3.14 (Contimed)

For Sandy Soil (Schmertmann,

1978)

$$
\begin{aligned}
& \text { circular } \\
& \begin{aligned}
& I_{t}=0.1 \mathrm{at} z=0 \\
& I_{t}=0.5 \mathrm{at} z=0 \\
& I_{t} \quad 0 \mathrm{at} z=2 \mathrm{~B}
\end{aligned}
\end{aligned}
$$

PEMODELAN KONSOLIDASI PRIMER

Akibat pertambahan beban \rightarrow kenaikan tekanan air pori
Keluarnya air dari pori \rightarrow tekanan air pori kembali lagi (tanah settle)

CONSOLIDATION SETTLEMENT

- Total Settlement (St) $=$ Si + Scp + Scs
- $\mathrm{Si}=$ Immediately Settlement
- Scp = Primary Gonsolidation Settlement
- Scs = Secondary Consolidation Settlement

Untuk lempung yang terkonsolidasi normal (Normally Consolidation) dimana
$\mathrm{Pc}<\mathrm{Po}$, maka
$\mathrm{Scp}=(\mathrm{Cc} . \mathrm{H} /-\mathrm{co}) \log (\mathrm{Po}+\Delta \mathrm{P} / \mathrm{Po})$
Bila $\mathrm{Pc}>\mathrm{Po}$ (Lempung yang Over Konsolidasi) maka terdapat 2 (dua) kemungkinan

Bila $\mathrm{Po}+\Delta \mathrm{P}<\mathrm{Pc}$ dan $\mathrm{Po}+\Delta \mathrm{P}>\mathrm{Pc}$
Po $+\Delta \mathrm{P}<\mathrm{Pc}$
$\mathrm{Scp}=(\mathrm{Cs} . \mathrm{H} / 1+\mathrm{eo}) \log (\mathrm{Po}+\Delta \mathrm{P} / \mathrm{Po})$
$\mathrm{Po}+\Delta \mathrm{P}>\mathrm{Pc}$
$\mathrm{Scp}=(\mathrm{Cs} . \mathrm{H} / 1+\mathrm{eo}) \log (\mathrm{Pc} / \mathrm{Po})+(\mathrm{Cc} . \mathrm{H} / 1+\mathrm{eo}) \log (\mathrm{Po}+\Delta \mathrm{P} / \mathrm{Pc})$

4.5 m below
this corner
Tegangan pada kedalaman 4.5 m

Shape	m	n	I_{r}	$\sigma_{i}=q I_{r}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
1	1	1	0.175	19.42
2	0.833	0.833	0.152	16.88
3	0.833	0.167	0.042	4.66
4	0.167	0.833	0.042	4.66
5	0.167	0.167	0.013	1.44

$$
\therefore \sigma_{z}=28.42 \mathrm{kN} / \mathrm{m}^{2}
$$

4

For irregularly shaped figures, the Newmark chart is more convenient to use than the Fadum chart (Fig. 3.4). It is constructed in such a way that each sub-division, bounded by two adjacent radial lines and two adjacent circles, represents an influence value of 0.005 . The scale line $A B$ is equal to the depth below ground level z and, at that depth, a pressure of $q \mathrm{kN} / \mathrm{m}^{2}$ on the surface will produce a vertical stress $\sigma_{z}=0.005 q \mathrm{kN} / \mathrm{m}^{2}$ at point N.

Figure 3.10

Settelement of Building Supported by Shallow Foundation

